This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073012 Decimal expansion of Robbins constant. 5
 6, 6, 1, 7, 0, 7, 1, 8, 2, 2, 6, 7, 1, 7, 6, 2, 3, 5, 1, 5, 5, 8, 3, 1, 1, 3, 3, 2, 4, 8, 4, 1, 3, 5, 8, 1, 7, 4, 6, 4, 0, 0, 1, 3, 5, 7, 9, 0, 9, 5, 3, 6, 0, 4, 8, 0, 8, 9, 4, 4, 2, 2, 9, 4, 7, 9, 5, 8, 4, 6, 4, 6, 1, 3, 8, 5, 9, 7, 6, 3, 1, 3, 0, 6, 6, 5, 2, 4, 8, 0, 7, 6, 8, 1, 0, 7, 1, 2, 0, 1, 5, 1, 7, 0, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The average distance between two points chosen at random inside a unit cube. LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Simon Plouffe, The Robbins constant, in Miscellaneous Mathematical Constants, p. 173. D. P. Robbins, Solution to problem E2629: Average distance between two points in a box, Amer. Mathematical Monthly, 85.4 1978 p. 278. Eric Weisstein's World of Mathematics, Cube Line Picking Eric Weisstein's World of Mathematics, Hypercube Line Picking FORMULA 4/105 + (17/105) * sqrt(2) - (2/35) * sqrt(3) + (1/5) * log(1+sqrt(2)) + (2/5) * log(2+sqrt(3)) - (1/15) * Pi. - Eric W. Weisstein, Mar 02 2005 EXAMPLE 0.66170718226717623515583113324841358174640013579095... MATHEMATICA RealDigits[ N[4/105 + 17/105*Sqrt[2] - 2/35*Sqrt[3] + 1/5*Log[1 + Sqrt[2]] + 2/5*Log[2 + Sqrt[3]] - 1/15*Pi, 110]] [[1]] PROG (PARI) (4 + 17*sqrt(2) - 6*sqrt(3) + 21*log(1 + sqrt(2)) + 42*log(2 + sqrt(3)) - 7*Pi)/105 \\ G. C. Greubel, Jan 11 2017 CROSSREFS Cf. A091505. Sequence in context: A153605 A247447 A112302 * A102522 A201672 A200299 Adjacent sequences:  A073009 A073010 A073011 * A073013 A073014 A073015 KEYWORD cons,nonn,changed AUTHOR Robert G. Wilson v, Aug 03 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 03:43 EDT 2017. Contains 293756 sequences.