

A051021


Decimal expansion of Mills' constant, assuming the Riemann Hypothesis is true.


11



1, 3, 0, 6, 3, 7, 7, 8, 8, 3, 8, 6, 3, 0, 8, 0, 6, 9, 0, 4, 6, 8, 6, 1, 4, 4, 9, 2, 6, 0, 2, 6, 0, 5, 7, 1, 2, 9, 1, 6, 7, 8, 4, 5, 8, 5, 1, 5, 6, 7, 1, 3, 6, 4, 4, 3, 6, 8, 0, 5, 3, 7, 5, 9, 9, 6, 6, 4, 3, 4, 0, 5, 3, 7, 6, 6, 8, 2, 6, 5, 9, 8, 8, 2, 1, 5, 0, 1, 4, 0, 3, 7, 0, 1, 1, 9, 7, 3, 9, 5, 7, 0, 7, 2, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Not known to be rational or irrational.  Charles R Greathouse IV, Jul 18 2013


REFERENCES

T. M. Apostol, Introduction to Analytic Number Theory, SpringerVerlag, 1976, page 8.
Chris K. Caldwell and Yuanyou Cheng, Determining Mills' Constant and a Note on Honaker's Problem, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.


LINKS

Tin Apato and Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 641 terms from Tin Apato)
C. K. Caldwell, Mills's Constant [Gives 6000 terms assuming the Riemann Hypothesis.]
C. Caldwell and Yuanyou Chen, Determining Mills' Constant and a Note on Honaker's Problem, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.
James Grime and Brady Haran, Awesome Prime Number Constant (video)
Robert P. Munafo, Notable Properties of Specific Numbers
Eric Weisstein's World of Mathematics, Mills' constant
Eric Weisstein's World of Mathematics, Prime formulas


EXAMPLE

1.3063778838630806904686144926026057129167845851567136443680537599664340537668...


MATHEMATICA

RealDigits[ Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8), 10, 111][[1]] (* Robert G. Wilson v, Nov 14 2012 *)


CROSSREFS

Cf. A051254.
Sequence in context: A162197 A160770 A212225 * A215664 A088162 A133170
Adjacent sequences: A051018 A051019 A051020 * A051022 A051023 A051024


KEYWORD

nonn,cons


AUTHOR

Eric W. Weisstein


EXTENSIONS

More terms from Robert G. Wilson v, Sep 08 2000
More terms from Tin Apato (tinapto(AT)yahoo.es), Dec 12 2007


STATUS

approved



