The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030179 Quarter-squares squared: A002620^2. 19
 0, 0, 1, 4, 16, 36, 81, 144, 256, 400, 625, 900, 1296, 1764, 2401, 3136, 4096, 5184, 6561, 8100, 10000, 12100, 14641, 17424, 20736, 24336, 28561, 33124, 38416, 44100, 50625, 57600, 65536, 73984, 83521, 93636, 104976, 116964 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Conjectured to be crossing number of complete bipartite graph K_{n,n}. Known to be true for n <= 7. If the Zarankiewicz conjecture is true, then a(n) is also the rectilinear crossing number of K_{n,n}. - Eric W. Weisstein, Apr 24 2017 a(n+1) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n}, and w,x,y+1,z+1 all even. - Clark Kimberling, May 29 2012 REFERENCES C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 G. Xiao, Contfrac Eric Weisstein's World of Mathematics, Complete Bipartite Graph Eric Weisstein's World of Mathematics, Graph Crossing Number Eric Weisstein's World of Mathematics, Rectilinear Crossing Number Eric Weisstein's World of Mathematics, Zarankiewicz's Conjecture Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1). FORMULA a(n) = floor(n^2/4)^2. From R. J. Mathar, Jul 08 2010: (Start) G.f.: x^2*(1+2*x+6*x^2+2*x^3+x^4) / ( (1+x)^3*(1-x)^5 ). a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8). (End) a(n) = (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32. - Luce ETIENNE, Aug 11 2014 MAPLE seq( (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32, n=0..40); # G. C. Greubel, Dec 28 2019 MATHEMATICA f[n_]:=Floor[n^2/2]; Table[Nest[f, n, 2], {n, 5!}]/2 (* Vladimir Joseph Stephan Orlovsky, Mar 10 2010 *) LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 1, 4, 16, 36, 81, 144}, 40] (* Harvey P. Dale, Apr 26 2011 *) Floor[Range[0, 30]^2/4]^2 (* Eric W. Weisstein, Apr 24 2017 *) PROG (PARI) a(n) = (n^2\4)^2 \\ Charles R Greathouse IV, Jun 11 2015 (MAGMA) [(Floor(n^2/4))^2: n in [0..40]]; // G. C. Greubel, Dec 28 2019 (Sage) [floor(n^2/4)^2 for n in (0..40)] # G. C. Greubel, Dec 28 2019 (GAP) List([0..40], n-> (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32); # G. C. Greubel, Dec 28 2019 CROSSREFS Cf. A000241, A002620, A014540. Sequence in context: A063755 A166721 A085040 * A207025 A207170 A207069 Adjacent sequences:  A030176 A030177 A030178 * A030180 A030181 A030182 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jan 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 18:18 EST 2021. Contains 340470 sequences. (Running on oeis4.)