The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058287 Continued fraction for e^Pi. 5
 23, 7, 9, 3, 1, 1, 591, 2, 9, 1, 2, 34, 1, 16, 1, 30, 1, 1, 4, 1, 2, 108, 2, 2, 1, 3, 1, 7, 1, 2, 2, 2, 1, 2, 3, 2, 166, 1, 2, 1, 4, 8, 10, 1, 1, 7, 1, 2, 3, 566, 1, 2, 3, 3, 1, 20, 1, 2, 19, 1, 3, 2, 1, 2, 13, 2, 2, 11, 3, 1, 2, 1, 7, 2, 1, 1, 1, 2, 1, 19, 1, 1, 12, 11, 1, 4, 1, 6, 1, 2, 18, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS "The transcendentality of e^{Pi} was proved in 1929." (Wells) REFERENCES Jan Gullberg, "Mathematics, From the Birth of Numbers," W.W. Norton and Company, NY and London, 1997, page 86. David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 81. LINKS Harry J. Smith, Table of n, a(n) for n = 0..20000 G. Xiao, Contfrac EXAMPLE e^Pi = 23.140692632779269005... = 23 + 1/(7 + 1/(9 + 1/(3 + 1/(1 + ...)))). - Harry J. Smith, Apr 19 2009 MAPLE with(numtheory): cfrac(evalf((exp(1))^(evalf(Pi)), 2560), 256, 'quotients'); MATHEMATICA ContinuedFraction[ E^Pi, 100] PROG (PARI) \p 300 contfrac(exp(1)^Pi) (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(1)^Pi); for (n=0, 20000, write("b058287.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Apr 19 2009 CROSSREFS Sequence in context: A158514 A040511 A264350 * A122706 A096640 A040510 Adjacent sequences:  A058284 A058285 A058286 * A058288 A058289 A058290 KEYWORD cofr,nonn,easy AUTHOR Robert G. Wilson v, Dec 07 2000 EXTENSIONS More terms from Jason Earls, Jun 21 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 18:00 EDT 2021. Contains 342888 sequences. (Running on oeis4.)