login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039921 Continued fraction expansion of w = 2*cos(Pi/7). 6
1, 1, 4, 20, 2, 3, 1, 6, 10, 5, 2, 2, 1, 2, 2, 1, 18, 1, 1, 3, 2, 1, 2, 1, 2, 1, 39, 2, 1, 1, 1, 13, 1, 2, 1, 30, 1, 1, 1, 3, 2, 5, 4, 1, 5, 1, 5, 1, 2, 1, 1, 94, 6, 2, 19, 11, 1, 60, 1, 1, 50, 2, 1, 1, 8, 53, 1, 3, 1, 6, 3, 2, 1, 5, 1, 1, 3, 4, 636, 1, 2, 1, 3, 3, 7, 9, 1, 2, 10, 3, 1, 22, 1, 119, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Arises in the approximation of 14-fold quasipatterns by 14 Fourier modes.

REFERENCES

A. M. Rucklidge & W. J. Rucklidge (preprint) 2002.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000

S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134.

S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]

Alastair Rucklidge, Home page

G. Xiao, Contfrac

Index entries for continued fractions for constants

FORMULA

w satisfies w^3 - w^2 - 2w + 1 = 0 and so is algebraic.

The other two roots are 2*cos(3 Pi/7) and 2*cos(5 Pi/7); their continued fraction expansions also end in 20, 2, 3, 1, 6, 10, 5, 2, 2, 1, ... which is a(n) for n >= 3. - Greg Dresden, Jul 01 2018

EXAMPLE

w = 1.80193773580483825247220463901489010233183832426371430010712484639886...

Equals 1 + 1/(1 + 1/(4 + 1/(20 + 1/(2 + ...)))). - Harry J. Smith, May 31 2009

MATHEMATICA

ContinuedFraction[2*Cos[Pi/7], 100]

PROG

(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(2*cos(Pi/7)); for (n=0, 20000, write("b039921.txt", n, " ", x[n+1])); } \\ Harry J. Smith, May 31 2009

CROSSREFS

Cf. A160389 (Decimal expansion). - Harry J. Smith, May 31 2009

Sequence in context: A002813 A263973 A104159 * A081852 A050017 A125514

Adjacent sequences:  A039918 A039919 A039920 * A039922 A039923 A039924

KEYWORD

cofr,nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 09:52 EST 2019. Contains 319363 sequences. (Running on oeis4.)