|
|
A047260
|
|
Numbers that are congruent to {0, 1, 4, 5} mod 6.
|
|
2
|
|
|
0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 28, 29, 30, 31, 34, 35, 36, 37, 40, 41, 42, 43, 46, 47, 48, 49, 52, 53, 54, 55, 58, 59, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73, 76, 77, 78, 79, 82, 83, 84, 85, 88, 89, 90, 91, 94, 95, 96, 97
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Numbers x which are not a solution to 3^x-2^x == 5 mod 7. - Cino Hilliard, May 14 2003
|
|
LINKS
|
Table of n, a(n) for n=1..66.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
|
|
FORMULA
|
G.f.: x^2*(1+3*x+x^2+x^3) / ((1+x)*(1+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (6n-5-i^(2n)+(1-i)*i^(-n)+(1+i)*i^n)/4 where i=sqrt(-1).
a(2n) = A007310(n), a(2n-1) = A047233(n). (End)
|
|
MAPLE
|
A047260:=n->(6*n-5-I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/4: seq(A047260(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
|
|
MATHEMATICA
|
Table[(6n-5-I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
|
|
PROG
|
(MAGMA) [n : n in [0..100] | n mod 6 in [0, 1, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
|
|
CROSSREFS
|
Cf. A007310, A047233.
Sequence in context: A010391 A010419 A255137 * A284790 A172999 A284371
Adjacent sequences: A047257 A047258 A047259 * A047261 A047262 A047263
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Wesley Ivan Hurt, May 21 2016
|
|
STATUS
|
approved
|
|
|
|