login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047241 Numbers that are congruent to {1, 3} mod 6. 28
1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49, 51, 55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99, 103, 105, 109, 111, 115, 117, 121, 123, 127, 129, 133, 135, 139, 141, 145, 147, 151, 153, 157, 159, 163, 165, 169, 171, 175, 177, 181, 183 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also the numbers k such that 10^p+k could possibly be prime. - Roderick MacPhee, Nov 20 2011 This statement can be written as follows. If 10^m + k = prime, for any m >= 1, then k is in this sequence. See the pink box comments by Roderick MacPhee from Dec 09 2014. - Wolfdieter Lang, Dec 09 2014

The odd-indexed terms are one more than the arithmetic mean of their neighbors; the even-indexed terms are one less than the arithmetic mean of their neighbors. - Amarnath Murthy, Jul 29 2003

Partial sums are A212959. - Philippe Deléham, Mar 16 2014

12*a(n) is conjectured to be the length of the boundary after n iterations of the hexagon and square expansion shown in the link. The squares and hexagons have side length 1 in some units. The pattern is supposed to become the planar Archimedean net 4.6.12 when n -> infinity. - Kival Ngaokrajang, Nov 30 2014

Positive numbers k for which 1/2 + k/3 + k^2/6 is an integer. - Bruno Berselli, Apr 12 2018

REFERENCES

L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics, Springer (2003); 14.4, p. 225.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics, Elementary and Beyond, Springer (2003); 14.4, p. 225.

Kival Ngaokrajang, Illustration of initial terms

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

From Paul Barry, Sep 04 2003: (Start)

O.g.f.: (1 + 2*x + 3*x^2)/((1 + x)*(1 - x)^2) = (1 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)).

E.g.f.: (6*x + 1)*exp(x)/2 + exp(-x)/2;

a(n) = 3*n - 5/2 - (-1)^n/2. (End)

a(n) = 2*floor((n-1)/2) + 2*n - 1. - Gary Detlefs, Mar 18 2010

a(n) = 6*n - a(n-1) - 8 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 05 2010

a(n) = 3*n - 2 - ((n+1) mod 2). - Wesley Ivan Hurt, Jun 29 2013

a(1)=1, a(2)=3, a(3)=7; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Oct 01 2013

From Benedict W. J. Irwin, Apr 13 2016: (Start)

A005408(a(n)+1) = A016813(A001651(n)),

A007310(a(n)) = A005408(A087444(n)-1),

A007310(A005408(a(n)+1)) = A017533(A001651(n)). (End)

MAPLE

seq(3*k-2-((k+1) mod 2), k=1..100); # Wesley Ivan Hurt, Sep 28 2013

MATHEMATICA

Table[{2, 4}, {30}] // Flatten // Prepend[#, 1]& // Accumulate (* Jean-François Alcover, Jun 10 2013 *)

Select[Range[200], MemberQ[{1, 3}, Mod[#, 6]]&] (* or *) LinearRecurrence[{1, 1, -1}, {1, 3, 7}, 70] (* Harvey P. Dale, Oct 01 2013 *)

PROG

(Haskell)

a047241 n = a047241_list !! (n-1)

a047241_list = 1 : 3 : map (+ 6) a047241_list

-- Reinhard Zumkeller, Feb 19 2013

(PARI) a(n)=bitor(3*n-3, 1) \\ Charles R Greathouse IV, Sep 28 2013

(Python) for n in xrange(1, 10**5):print(3*n-2-((n+1)%2)) # Soumil Mandal, Apr 14 2016

CROSSREFS

Cf. A047233, A056970, A007310, A047228, A047261, A047273.

Subsequence of A186422.

Union of A016921 and A016945. - Wesley Ivan Hurt, Sep 28 2013

Sequence in context: A235387 A285144 * A086515 A132222 A111225 A032678

Adjacent sequences:  A047238 A047239 A047240 * A047242 A047243 A047244

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Formula corrected by Bruno Berselli, Jun 24 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 21 16:27 EDT 2018. Contains 304398 sequences. (Running on oeis4.)