login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020761 Decimal expansion of 1/2. 12
5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Real part of all nontrivial zeros of the Riemann zeta function (assuming the Riemann hypothesis to be true). - Alonso del Arte, Jul 02 2011

Radius of a sphere with surface area Pi. - Omar E. Pol, Aug 09 2012

Radius of the midsphere (tangent to the edges) in a regular octahedron with unit edges. Also radius of the inscribed sphere (tangent to faces) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014

Construct a rectangle of maximal area inside an arbitrary triangle. The ratio of the rectangle's area to the triangle's area is 1/2. - Rick L. Shepherd, Jul 30 2014

LINKS

Table of n, a(n) for n=0..98.

Wikipedia, Riemann zeta function

Wikipedia, Platonic solid

Index entries for linear recurrences with constant coefficients, signature (1).

FORMULA

Sum(k=1,2,3...)(1/3^k). Hence 1/2 = 0.1111111111111... in base 3.

Cosine of 60 degrees, i.e., cos(Pi/3).

-zeta(0), zeta being the Riemann function. - Stanislav Sykora, Mar 27 2014

a(0) = 5; a(n) = 0, n > 0. - Wesley Ivan Hurt, Mar 27 2014

a(n) = 5 * floor(1/(n + 1)). - Wesley Ivan Hurt, Mar 27 2014

EXAMPLE

1/2 = 0.50000000000000...

MAPLE

Digits:=100; evalf(1/2); # Wesley Ivan Hurt, Mar 27 2014

MATHEMATICA

RealDigits[1/2, 10, 128][[1]] (* Alonso del Arte, Dec 13 2013 *)

LinearRecurrence[{1}, {5, 0}, 99] (* Ray Chandler, Jul 15 2015 *)

PROG

(PARI) { default(realprecision); x=1/2*10; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Felix Fröhlich, Jul 24 2014

(PARI) a(n) = 5*(n==0); \\ Michel Marcus, Jul 25 2014

CROSSREFS

Cf. In platonic solids:

midsphere radii:

A020765 (tetrahedron),

A010503 (cube),

A019863 (icosahedron),

A239798 (dodecahedron);

insphere radii:

A020781 (tetrahedron),

A020763 (octahedron),

A179294 (icosahedron),

A237603 (dodecahedron).

Sequence in context: A115544 A241471 A152623 * A281462 A236239 A047752

Adjacent sequences:  A020758 A020759 A020760 * A020762 A020763 A020764

KEYWORD

nonn,cons,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 19:58 EST 2019. Contains 319251 sequences. (Running on oeis4.)