OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..20000
Jeffrey O. Shallit, Letter to N. J. A. Sloane with attachment, Aug. 1979
Jeffrey O. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), no. 2, 209-217.
Jeffrey O. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), no. 2, 209-217.
Jeffrey O. Shallit, Simple Continued Fractions for Some Irrational Numbers II, J. Number Theory 14 (1982), 228-231.
FORMULA
Recurrence: a(0)=0, a(1)=2, a(2)=5, a(16n+5)=a(16n+12)=a(32n+9)=a(32n+24)=1, a(8n+3)=a(8n+6)=a(16n+4)=a(16n+13)=a(32n+8)=a(32n+25)=3, a(8n+2)=a(8n+7)=5, a(16n)=a(8n), a(16n+1)=a(8n+1). - Ralf Stephan, May 17 2005
EXAMPLE
0.456942562477639661115491826... = 0 + 1/(2 + 1/(5 + 1/(3 + 1/(3 + ...)))).
MAPLE
u := 3: v := 7: Buv := [u, 1, [0, u-1, u+1]]: for k from 2 to v do n := nops(Buv[3]): Buv := [u, Buv[2]+1, [seq(Buv[3][i], i=1..n-1), Buv[3][n]+1, Buv[3][n]-1, seq(Buv[3][n-i], i=1..n-2)]] od: seq(Buv[3][i], i=1..2^v); # first 2^v terms of A004200 # Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Dec 02 2002
MATHEMATICA
ContinuedFraction[ NSum[1/3^(2^n), {n, 0, Infinity}, WorkingPrecision -> 105], 105] (* Jean-François Alcover, Jul 18 2011 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 20000); x=suminf(n=0, 1/3^(2^n)); x=contfrac(x); for (n=1, 20001, write("b004200.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 10 2009
CROSSREFS
KEYWORD
nonn,cofr
AUTHOR
EXTENSIONS
Better description and more terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 19 2001
STATUS
approved