This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004202 Skip 1, take 1, skip 2, take 2, skip 3, take 3, etc. 11
 2, 5, 6, 10, 11, 12, 17, 18, 19, 20, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 50, 51, 52, 53, 54, 55, 56, 65, 66, 67, 68, 69, 70, 71, 72, 82, 83, 84, 85, 86, 87, 88, 89, 90, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) are the numbers satisfying m < sqrt(a(n)) < m + 0.5 for some integer m. - Floor van Lamoen, Jul 24 2001 a(A000217(n)) = A002378(n). [Reinhard Zumkeller, Feb 12 2011] Complement of A004201. Upper s(n)-Wythoff sequence (as defined in A184117), for s(n)=A002024(n)=floor[1/2+sqrt(2n)]. I.e., A004202(n) = A002024(n) + A004201(n), with A004201(1)=1 and for n>1, A004201(n) = least positive integer not yet in (A004201(1..n-1) union A004202(1..n-1)). - M. F. Hasler (following observations from R. J. Mathar), Feb 13 2011 Positions of record values in A256188 that are greater than 1: A014132(n) = A256188(a(n)). - Reinhard Zumkeller, Mar 26 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA a(n) = n + A000217(A002024(n)). - M. F. Hasler, Feb 13 2011 T(n, k) = n^2 + k, for n>=1, k>=1 as a triangular array. a(n) = n + A127739(n). - Michael Somos, May 03 2019 EXAMPLE Interpretation as  Wythoff sequence (from Clark Kimberling): s = (1,2,2,3,3,3,4,4,4,4...) = A002024 (n n's); a = (1,3,4,7,8,9,13,14,...) = A004201 = least number > 0 not yet in a or b; b = (2,5,6,10,11,12,17,18,...) = A004202 = a+s. From Michael Somos, May 03 2019: (Start) As a triangular array   2;   5,  6;   10, 11, 12;   17, 18, 19, 20; (End) MATHEMATICA a = Table[n, {n, 1, 210} ]; b = {}; Do[a = Drop[a, {1, n} ]; b = Append[b, Take[a, {1, n} ]]; a = Drop[a, {1, n} ], {n, 1, 14} ]; Flatten[b] a[ n_] := If[ n < 1, 0, With[{m = Round@Sqrt[2 n]}, n + m (m + 1)/2]]; (* Michael Somos, May 03 2019 *) Take[#, (-Length[#])/2]&/@Module[{nn=20}, TakeList[Range[ nn+nn^2], 2*Range[ nn]]]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *) PROG (Haskell) a004202 n = a004202_list !! (n-1) a004202_list = skipTake 1 [1..] where    skipTake k xs = take k (drop k xs) ++ skipTake (k + 1) (drop (2*k) xs -- Reinhard Zumkeller, Feb 12 2011 (PARI) A004202(n) = n+0+(n=(sqrtint(8*n-7)+1)\2)*(n+1)\2  \\ M. F. Hasler, Feb 13 2011 (PARI) {a(n) = my(m); if( n<1, 0, m=round(sqrt(2*n)); n + m*(m+1)/2)}; /* Michael Somos, May 03 2019 */ CROSSREFS Cf. A004201, A007606, A064801. Cf. A014132, A256188, A127739. Sequence in context: A244731 A307562 A109150 * A013647 A255068 A183987 Adjacent sequences:  A004199 A004200 A004201 * A004203 A004204 A004205 KEYWORD nonn,tabl AUTHOR Alexander Stasinski STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 13:54 EDT 2019. Contains 328299 sequences. (Running on oeis4.)