login
A047451
Numbers that are congruent to {0, 6} mod 8.
13
0, 6, 8, 14, 16, 22, 24, 30, 32, 38, 40, 46, 48, 54, 56, 62, 64, 70, 72, 78, 80, 86, 88, 94, 96, 102, 104, 110, 112, 118, 120, 126, 128, 134, 136, 142, 144, 150, 152, 158, 160, 166, 168, 174, 176, 182, 184, 190, 192, 198, 200, 206, 208, 214, 216, 222, 224, 230
OFFSET
1,2
COMMENTS
All even numbers m such that Integral_{x=0..2*Pi} Product_{i=1..m/2} cos(2*i*x) dx is nonzero. - William Boyles, Oct 12 2019
FORMULA
a(n) = 8*n - a(n-1) - 10 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 4*n - 3 + (-1)^n.
G.f.: 2*x^2*(3+x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=6 and b(k)=2^(k+2) for k > 0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((8/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
Sum_{n>=2} (-1)^n/a(n) = 3*log(2)/8 - Pi/16. - Amiram Eldar, Dec 18 2021
E.g.f.: (4*x + 1)*exp(x) - exp(-x) = 4*x*exp(x) + 2*sinh(x). - David Lovler, Aug 02 2022
MATHEMATICA
Array[8 # + {0, 6} &, 29, 0] // Flatten (* or *)
Rest@ CoefficientList[Series[2 x^2*(3 + x)/((1 + x) (x - 1)^2), {x, 0, 58}], x] (* Michael De Vlieger, Nov 18 2019 *)
LinearRecurrence[{1, 1, -1}, {0, 6, 8}, 80] (* Harvey P. Dale, Apr 09 2022 *)
PROG
(PARI) forstep(n=0, 200, [6, 2], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
(PARI) a(n) = 4*n - 3 + (-1)^n; \\ David Lovler, Jul 25 2022
CROSSREFS
Union of A008590 and A017137.
Cf. A030308, A047504 (complement).
Sequence in context: A359827 A315884 A178950 * A194399 A315885 A315886
KEYWORD
nonn,easy
STATUS
approved