|
|
A047448
|
|
Numbers that are congruent to {0, 2, 3, 5, 6} mod 8.
|
|
1
|
|
|
0, 2, 3, 5, 6, 8, 10, 11, 13, 14, 16, 18, 19, 21, 22, 24, 26, 27, 29, 30, 32, 34, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 54, 56, 58, 59, 61, 62, 64, 66, 67, 69, 70, 72, 74, 75, 77, 78, 80, 82, 83, 85, 86, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
|
|
FORMULA
|
G.f.: x^2*(2+x+2*x^2+x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Jul 31 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 40 + 3*(n mod 5) - 2*((n+1) mod 5) + 3*((n+2) mod 5) - 2*((n+3) mod 5) - 2*((n+4) mod 5))/25.
a(5k) = 8k-2, a(5k-1) = 8k-3, a(5k-2) = 8k-5, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)
|
|
MAPLE
|
A047448:=n->8*floor(n/5)+[(0, 2, 3, 5, 6)][(n mod 5)+1]: seq(A047448(n), n=0..100); # Wesley Ivan Hurt, Jul 31 2016
|
|
MATHEMATICA
|
Select[Range[0, 100], MemberQ[{0, 2, 3, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jul 31 2016 *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 2, 3, 5, 6, 8}, 70] (* Harvey P. Dale, Feb 08 2022 *)
|
|
PROG
|
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 3, 5, 6]]; // Wesley Ivan Hurt, Jul 31 2016
|
|
CROSSREFS
|
Sequence in context: A257804 A285209 A184590 * A260396 A029921 A026355
Adjacent sequences: A047445 A047446 A047447 * A047449 A047450 A047451
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|