login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047283 Numbers that are congruent to {0, 1, 3, 6} mod 7. 2
0, 1, 3, 6, 7, 8, 10, 13, 14, 15, 17, 20, 21, 22, 24, 27, 28, 29, 31, 34, 35, 36, 38, 41, 42, 43, 45, 48, 49, 50, 52, 55, 56, 57, 59, 62, 63, 64, 66, 69, 70, 71, 73, 76, 77, 78, 80, 83, 84, 85, 87, 90, 91, 92, 94, 97, 98, 99, 101, 104, 105, 106, 108, 111 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..64.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).

FORMULA

G.f.: x^2*(1+2*x+3*x^2+x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011

a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Mar 09 2012

From Wesley Ivan Hurt, May 22 2016: (Start)

a(n) = (14n-15+i^(2n)+(3+i)*i^(-n)+(3-i)*i^n)/8 where i=sqrt(-1).

a(2n) = A047336(n), a(2n-1) = A047355(n). (End)

MAPLE

A047283:=n->(14*n-15+I^(2*n)+(3+I)*I^(-n)+(3-I)*I^n)/8: seq(A047283(n), n=1..100); # Wesley Ivan Hurt, May 22 2016

MATHEMATICA

Select[Range[0, 100], MemberQ[{0, 1, 3, 6}, Mod[#, 7]]&] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 3, 6, 7}, 60] (* Harvey P. Dale, Mar 09 2012 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 7 in [0, 1, 3, 6]]; // Wesley Ivan Hurt, May 22 2016

CROSSREFS

Cf. A047336, A047355.

Sequence in context: A050244 A295566 A266986 * A155932 A298980 A206586

Adjacent sequences:  A047280 A047281 A047282 * A047284 A047285 A047286

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Wesley Ivan Hurt, May 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 00:49 EDT 2019. Contains 325189 sequences. (Running on oeis4.)