OFFSET
0,2
COMMENTS
Equals [1, 2, 3, ...] convolved with [1, 9, 0, 0, 0, ...]. - Gary W. Adamson, May 30 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1] = -1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-1) = -coeff(charpoly(A,x),x^(n-1)). - Milan Janjic, Feb 21 2010
Positive integers with last decimal digit = 1. - Wesley Ivan Hurt, Jun 17 2015
Also the number of (not necessarily maximal) cliques in the 2n-crossed prism graph. - Eric W. Weisstein, Nov 29 2017
From Martin Renner, May 28 2024: (Start)
Also number of squares in a grid cross with equally long arms and a width of two points (cf. A017113), e.g. for n = 2 there are nine squares of size 1 unit of area, four of size 2, two of size 5, four of size 8 and two of size 13, thus a total of 21 squares.
· · · · · · · · * ·
· · · · * · * · · ·
* * · · · · · · * · · · · · · · * · · · · · · · · · · · · *
* * · · · · · * · * · · · * · · · · * · · · * · * · · · · ·
· · * · · * · · · ·
· · · · · · * · · *
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
Tanya Khovanova, Recursive Sequences
Eric Weisstein's World of Mathematics, Clique
Eric Weisstein's World of Mathematics, Crossed Prism Graph
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
G.f.: (1+9*x)/(1-x)^2.
a(n) = 20*n - a(n-1) - 8, with a(0)=1. - Vincenzo Librandi, Nov 20 2010
a(n) = 2*a(n-1) - a(n-2), for n > 2. - Wesley Ivan Hurt, Jun 17 2015
E.g.f.: (1 + 10*x)*exp(x). - G. C. Greubel, Sep 18 2019
MAPLE
MATHEMATICA
f[n_] := FromDigits[IntegerDigits[n^2, n + 1]]; Array[f, 60] (* Robert G. Wilson v, Apr 14 2009 *)
Range[1, 1000, 10] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
(* From Eric W. Weisstein, Nov 29 2017: (Start) *)
Table[10n+1, {n, 0, 60}]
10*Range[0, 60] + 1
LinearRecurrence[{2, -1}, {11, 21}, {0, 60}]
CoefficientList[Series[(1+9x)/(1-x)^2, {x, 0, 60}], x] (* End *)
PROG
(Haskell)
a017281 = (+ 1) . (* 10)
a017281_list = [1, 11..] -- Reinhard Zumkeller, Apr 16 2012
(Magma) [10*n+1 : n in [0..60]]; // Zaki Khandaker, May 16 2015
(PARI) Vec((1+9*x)/(1-x)^2 + O(x^80)) \\ Michel Marcus, Jun 17 2015
(Sage) [10*n+1 for n in (0..60)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..60], n-> 10*n+1 ); # G. C. Greubel, Sep 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved