The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005318 Conway-Guy sequence: a(n + 1) = 2a(n) - a(n - floor( 1/2 + sqrt(2n) )). (Formerly M1075) 22
 0, 1, 2, 4, 7, 13, 24, 44, 84, 161, 309, 594, 1164, 2284, 4484, 8807, 17305, 34301, 68008, 134852, 267420, 530356, 1051905, 2095003, 4172701, 8311101, 16554194, 32973536, 65679652, 130828948, 261127540, 521203175, 1040311347, 2076449993, 4144588885, 8272623576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conway and Guy conjecture that the set of k numbers {s_i = a(k) - a(k-i) : 1 <= i <= k} has the property that all its subsets have distinct sums - see Guy's book. These k-sets are the rows of A096858. [This conjecture has apparently now been proved by Bohman. - I. Halupczok (integerSequences(AT)karimmi.de), Feb 20 2006] REFERENCES J. H. Conway and R. K. Guy, Solution of a problem of Erdos, Colloq. Math. 20 (1969), p. 307. R. K. Guy, Unsolved Problems in Number Theory, C8. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). M. Wald, Problem 1192, Unequal sums, J. Rec. Math., 15 (No. 2, 1983-1984), pp. 148-149. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..3324 (first 301 terms from T. D. Noe) Tom Bohman, A sum packing problem of Erdos and the Conway-Guy sequence, Proc. AMS 124, (No. 12, 1996), pp. 3627-3636. P. Borwein and M. J. Mossinghoff, Newman Polynomials with Prescribed Vanishing and Integer Sets with Distinct Subset Sums, Math. Comp., 72 (2003), 787-800. J. H. Conway & R. K. Guy, Sets of natural numbers with distinct sums, Manuscript. R. K. Guy, Letter to N. J. A. Sloane, Apr 1975 R. K. Guy, Sets of integers whose subsets have distinct sums, pp. 141-154 of Theory and practice of combinatorics. Ed. A. Rosa, G. Sabidussi and J. Turgeon. Annals of Discrete Mathematics, 12. North-Holland 1982. R. K. Guy, Sets of integers whose subsets have distinct sums, pp. 141-154 of Theory and practice of combinatorics. Ed. A. Rosa, G. Sabidussi and J. Turgeon. Annals of Discrete Mathematics, 12. North-Holland 1982. (Annotated scanned copy) G. Kreweras, Sur quelques problèmes relatifs au vote pondéré [Some problems of weighted voting], Math. Sci. Humaines No. 84 (1983), 45-63. G. Kreweras, Alvarez Rodriguez, Miguel-Angel, Pondération entière minimale de N telle que pour tout k toutes les k-parties de N aient des poids distincts, [Minimal integer weighting of N such that for any k all the k-subsets of N have unequal weights] C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 8, 345-347. G. Kreweras, Alvarez Rodriguez, Miguel-Angel, Pondération entière minimale de N telle que pour tout k toutes les k-parties de N aient des poids distincts, [Minimal integer weighting of N such that for any k all the k-subsets of N have unequal weights], C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 8, 345-347. (Annotated scanned copy) W. F. Lunnon, Integer sets with distinct subset-sums, Math. Comp. 50 (1988), 297-320. M. Wald & N. J. A. Sloane, Correspondence and Attachment, 1987 FORMULA a(n+1) = 2*a(n)-A205744(n), A205744(n) = a(A083920(n)), A083920(n) = n - A002024(n). - N. J. A. Sloane, Feb 11 2012 MATHEMATICA a[n_] := a[n] = 2*a[n-1] - a[n - Floor[Sqrt[2]*Sqrt[n-1] + 1/2] - 1]; a[0]=0; a[1]=1; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, May 15 2013 *) PROG (PARI) a(n)=if(n<=1, n==1, 2*a(n-1)-a(n-1-(sqrtint(8*n-15)+1)\2)) (PARI) A=[]; /* This is the program above with memoization. */ a(n)=if(n<3, return(n)); if(n>#A, A=concat(A, vector(n-#A)), if(A[n], return(A[n]))); A[n]=2*a(n-1)-a(n-1-(sqrtint(8*n-15)+1)\2) \\ Charles R Greathouse IV, Sep 09 2016 (Haskell) a005318 n = a005318_list !! n a005318_list = 0 : 1 : zipWith (-) (map (* 2) \$ tail a005318_list) (map a005318 a083920_list) -- Reinhard Zumkeller, Feb 12 2012 (Python) from sympy import sqrt, floor def a(n): return n if n<2 else 2*a(n - 1) - a(n - floor(sqrt(2)*sqrt(n - 1) + 1/2) - 1) # Indranil Ghosh, Jun 03 2017 CROSSREFS Cf. A037254, A096858, A096796, A096824, A205744, A206239, A083920, A003056. Sequence in context: A255069 A160254 A276661 * A102111 A224704 A265826 Adjacent sequences: A005315 A005316 A005317 * A005319 A005320 A005321 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from Larry Reeves (larryr(AT)acm.org), Sep 21 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:40 EST 2022. Contains 358649 sequences. (Running on oeis4.)