login
A047598
Numbers that are congruent to {3, 4, 5} mod 8.
1
3, 4, 5, 11, 12, 13, 19, 20, 21, 27, 28, 29, 35, 36, 37, 43, 44, 45, 51, 52, 53, 59, 60, 61, 67, 68, 69, 75, 76, 77, 83, 84, 85, 91, 92, 93, 99, 100, 101, 107, 108, 109, 115, 116, 117, 123, 124, 125, 131, 132, 133, 139, 140, 141, 147, 148, 149, 155, 156, 157
OFFSET
1,1
FORMULA
From Wesley Ivan Hurt, Jun 09 2016: (Start)
G.f.: x*(3+x+x^2+3*x^3)/((x-1)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-12-15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-3, a(3k-1) = 8k-4, a(3k-2) = 8k-5. (End)
MAPLE
A047598:=n->(24*n-12-15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047598(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{3, 4, 5}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {3, 4, 5, 11}, 80] (* Harvey P. Dale, May 20 2021 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3..5]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A349005 A128920 A006288 * A283773 A214256 A067532
KEYWORD
nonn,easy
STATUS
approved