OFFSET
0,2
COMMENTS
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023
REFERENCES
Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, first tiling.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..1000
Brian Galebach, Collection of n-Uniform Tilings. See Number 2 from the list of 20 2-uniform tilings.
Brian Galebach, Enlarged illustration of tiling, suitable for coloring (taken from the web site in the previous link)
Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
Reticular Chemistry Structure Resource (RCSR), The cph tiling (or net)
Anton Shutov and Andrey Maleev, Coordination sequences of 2-uniform graphs, Z. Kristallogr., 235 (2020), 157-166. See supplementary material, krb, vertex u_1.
Rémy Sigrist, Illustration of initial terms
Rémy Sigrist, PARI program for A301287
N. J. A. Sloane, Trunks and branches for determining coordination sequence, central view. Blue = trunks, red = branches, green = twigs.
N. J. A. Sloane, Trunks and branches, a different scan, truncated on right but otherwise shows quadrants I and IV in detail
N. J. A. Sloane, Trunks and branches in first quadrant, in full.
N. J. A. Sloane, Trunks and branches in fourth quadrant, in full.
N. J. A. Sloane, Details of proof (page 1)
N. J. A. Sloane, Details of proof (page 2)
Index entries for linear recurrences with constant coefficients, signature (1,-1,2,-1,1,-1).
FORMULA
G.f. = -(2*x^8-2*x^7-x^6-4*x^5-2*x^4-2*x^3-4*x^2-2*x-1) / ((x^2+1)*(x^2+x+1)*(x-1)^2). N. J. A. Sloane, Mar 28 2018 (This is now a theorem. - N. J. A. Sloane, Apr 05 2018)
Equivalent conjecture: 3*a(n) = 8*n+2*A057078(n+1)+3*A228826(n+2). - R. J. Mathar, Mar 31 2018 (This is now a theorem. - N. J. A. Sloane, Apr 05 2018)
Theorem: G.f. = (1+2*x+4*x^2+2*x^3+2*x^4+4*x^5+1*x^6+2*x^7-2*x^8) / ((1-x)*(1+x^2)*(1-x^3)).
Proof. This follows by applying the coloring book method described in the Goodman-Strauss & Sloane article. The trunks and branches structure is shown in the links, and the details of the proof (by calculating the generating function) are on the next two scanned pages. - N. J. A. Sloane, Apr 05 2018
MATHEMATICA
Join[{1, 3, 6}, LinearRecurrence[{1, -1, 2, -1, 1, -1}, {7, 8, 15, 18, 17, 20}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
PROG
(PARI) See Links section.
CROSSREFS
Cf. A301289.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 23 2018
EXTENSIONS
More terms from Rémy Sigrist, Mar 27 2018
STATUS
approved