login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006267 Continued cotangent for the golden ratio.
(Formerly M3699)
21
1, 4, 76, 439204, 84722519070079276, 608130213374088941214747405817720942127490792974404 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..7

Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3 (Fall 1998), p. 176; Solution, ibid., Vol. 12, No. 1 (Winter 2000), pp. 61-62.

Jeffrey Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B, Vol. 80B, No. 2 (1976), pp. 285-290.

Zalman Usiskin, Problem B-266, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 11, No. 3 (1973), p. 334; Lucas Numbers for Powers of 3, Solution to Problem B-266 by David Zeitlin, ibid., Vol. 12, No. 3 (1974), p. 315-316.

Eric Weisstein's World of Mathematics, Lehmer Cotangent Expansion.

FORMULA

(1+sqrt(5))/2 = cot(Sum_{n>=0} (-1)^n*acot(a(n))); let b(0) = (1+sqrt(5))/2, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)) then a(n) = floor(b(n)). - Benoit Cloitre, Apr 10 2003

a(n) = A000204(3^n). - Benoit Cloitre, Sep 18 2005

a(n) = Round(c^(3^n)) where c = GoldenRatio = 1.6180339887498948482... = (sqrt(5)+1)/2 (A001622). - Artur Jasinski, Sep 22 2008

Recurrence a(n+1) = a(n)^3 + 3*a(n), a(0)=4. - Artur Jasinski, Sep 24 2008

a(n+1) = Product_{k = 0..n} A002813(k). Thus a(n) divides a(n+1). - Peter Bala, Nov 22 2012

Sum_{n>=0} a(n)^2/A045529(n+1) = 1. - Amiram Eldar, Jan 12 2022

a(n) = Product_{k=0..n-1} (Lucas(2*3^k) + 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022

MATHEMATICA

c = N[GoldenRatio, 1000]; Table[Round[c^(3^n)], {n, 1, 8}] (* Artur Jasinski, Sep 22 2008 *)

a = {}; x = 4; Do[AppendTo[a, x]; x = x^3 + 3 x, {n, 1, 10}]; a (* Artur Jasinski, Sep 24 2008 *)

PROG

(PARI) bn=vector(100); b(n)=if(n<0, 0, bn[n]); bn[1]=(1+sqrt(5))/2; for(n=2, 10, bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)))) a(n)=floor(b(n+1))

(PARI) { default(realprecision, 10000); bn=vector(8); bn[1]=(1+sqrt(5))/2; for(n=2, 8, bn[n]=(bn[n-1]*floor(bn[n-1]) + 1)/(bn[n-1] - floor(bn[n-1]))); for (n=1, 8, write("b006267.txt", n-1, " ", floor(bn[n]))); } \\ Harry J. Smith, May 04 2009

CROSSREFS

Cf. A000032, A000204, A001622, A001999, A002666, A002667, A002668, A002813, A045529.

Sequence in context: A052271 A184272 A080989 * A273952 A201984 A210519

Adjacent sequences:  A006264 A006265 A006266 * A006268 A006269 A006270

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

The next term is too large to include.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 18:27 EDT 2022. Contains 355029 sequences. (Running on oeis4.)