OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
a(n) = a(n-3) + 8. - Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006
G.f.: x*(2+x+3*x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Jul 08 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n - 15 - 3*cos(2*n*Pi/3) + 5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-5, a(3k-2) = 8k-6. (End)
MAPLE
A047402:=n->(24*n-15-3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047402(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Flatten[#+{2, 3, 6}&/@(8Range[0, 20])] (* or *) LinearRecurrence[{1, 0, 1, -1}, {2, 3, 6, 10}, 70] (* Harvey P. Dale, Nov 03 2013 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [2, 3, 6]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved