login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048633 Largest squarefree number dividing n-th central binomial coefficient C(n,[ n/2 ]). 6
1, 2, 3, 6, 10, 10, 35, 70, 42, 42, 462, 462, 858, 858, 2145, 4290, 24310, 24310, 92378, 92378, 176358, 176358, 1352078, 1352078, 520030, 520030, 222870, 222870, 6463230, 6463230, 100180065, 200360130, 129644790, 129644790, 907513530 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(2k+1)=a(2k+2) unless 2k+1 is in A000225, in which case a(2k+2)=2*a(2k+1). - Robert Israel, Jan 21 2020

LINKS

Robert Israel, Table of n, a(n) for n = 1..3364

EXAMPLE

n=10: C(10,5)=252=2*2*3*3*7. The largest squarefree number dividing the 10th central binomial coefficient is 2*3*7=42. Thus a(10)=42

MAPLE

f:= n -> convert(numtheory:-factorset(binomial(n, floor(n/2))), `*`):

map(f, [$1..50]); # Robert Israel, Jan 21 2020

MATHEMATICA

Table[Last@ Select[Divisors@ Binomial[n, Floor[n/2]], SquareFreeQ], {n, 35}] (* Michael De Vlieger, Feb 05 2017 *)

PROG

(PARI) a(n)=factorback(factor(binomial(n, n\2))[, 1]) \\ Charles R Greathouse IV, Nov 05 2017

(MAGMA) [&*PrimeDivisors(Binomial(n, Floor(n/2))): n in [1..35]]; // Marius A. Burtea, Jan 21 2020

CROSSREFS

Equals A007947(A001405(n)). Cf. A034973, A000225.

See A056058 for another version.

Sequence in context: A056060 A056058 A028255 * A225175 A286954 A047402

Adjacent sequences:  A048630 A048631 A048632 * A048634 A048635 A048636

KEYWORD

nonn,changed

AUTHOR

Labos Elemer

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 13:34 EST 2020. Contains 331171 sequences. (Running on oeis4.)