OFFSET
2,2
COMMENTS
For polygons with an odd number of sides see A070911.
LINKS
Günter Rote, Table of n, a(n) for n = 2..100
Charles J. Colbourn and R. J. Simpson, A note on bounds on the minimum area of convex lattice polygons, Bull. Austral. Math. Soc., 45[1992], 237-240.
Stanley Rabinowitz, Convex Lattice Polygons, Ph.D. Dissertation (Polytechnic University, Brooklyn, New York, 1986).
Günter Rote, a(n), together with coordinates of some smallest 2n-gon, for n=2..100, (2023).
Günter Rote, Python program for this sequence, and for A070911, (2023).
R. J. Simpson, Convex lattice polygons of minimum area, Bull. Austral. Math. Soc., 42[1990], 353-367.
EXAMPLE
The first entry is 1 because the convex lattice quadrilateral of minimal area is a unit square. The minimal area hexagon has area 3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jamie Simpson, Dec 07 2003
EXTENSIONS
a(22) onwards from Günter Rote, Sep 17 2023
STATUS
approved