login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047567 Numbers that are congruent to {0, 4, 5, 6, 7} mod 8. 1
0, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 60, 61, 62, 63, 64, 68, 69, 70, 71, 72, 76, 77, 78, 79, 80, 84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 100, 101, 102, 103 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).

FORMULA

From Chai Wah Wu, May 30 2016: (Start)

a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.

G.f.: x^2*(x^4 + x^3 + x^2 + x + 4)/(x^6 - x^5 - x + 1). (End)

From Wesley Ivan Hurt, Aug 16 2016: (Start)

a(n) = a(n-5) + 8 for n > 5.

a(n) = n + 2 + 3*floor((n-2)/5).

a(n) = (8*n + 4 - 3*((n+3) mod 5))/5.

a(5k) = 8k-1, a(5k-1) = 8k-2, a(5k-2) = 8k-3, a(5k-3) = 8k-4, a(5k-4) = 8k-8. (End)

MAPLE

A047567:=n->8*floor(n/5)+[0, 4, 5, 6, 7][(n mod 5)+1]: seq(A047567(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2016

MATHEMATICA

Select[Range[0, 100], MemberQ[{0, 4, 5, 6, 7}, Mod[#, 8]]&] (* Harvey P. Dale, Apr 16 2014 *)

LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 4, 5, 6, 7, 8}, 50] (* G. C. Greubel, May 30 2016 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 8 in [0, 4, 5, 6, 7]]; // Wesley Ivan Hurt, Aug 16 2016

CROSSREFS

Sequence in context: A285429 A073073 A213525 * A050038 A285218 A059709

Adjacent sequences:  A047564 A047565 A047566 * A047568 A047569 A047570

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 15 16:53 EST 2019. Contains 320136 sequences. (Running on oeis4.)