OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
FORMULA
From Chai Wah Wu, May 30 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f.: x^2*(x^4 + x^3 + x^2 + x + 4)/(x^6 - x^5 - x + 1). (End)
From Wesley Ivan Hurt, Aug 16 2016: (Start)
a(n) = a(n-5) + 8 for n > 5.
a(n) = n + 2 + 3*floor((n-2)/5).
a(n) = (8*n + 4 - 3*((n+3) mod 5))/5.
a(5k) = 8k-1, a(5k-1) = 8k-2, a(5k-2) = 8k-3, a(5k-3) = 8k-4, a(5k-4) = 8k-8. (End)
MAPLE
A047567:=n->8*floor(n/5)+[0, 4, 5, 6, 7][(n mod 5)+1]: seq(A047567(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 4, 5, 6, 7}, Mod[#, 8]]&] (* Harvey P. Dale, Apr 16 2014 *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 4, 5, 6, 7, 8}, 50] (* G. C. Greubel, May 30 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 4, 5, 6, 7]]; // Wesley Ivan Hurt, Aug 16 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved