This site is supported by donations to The OEIS Foundation.

# CiteM

"I'll say a little about how we originally found the main result of this paper in case the reader is curious. ... we calculated ... with the help of computer algebra software, from which we guessed that the coefficients were in fact independent of the vector space. Searching the OEIS then revealed the coefficients probably formed a known sequence, and from there it was not diffcult to prove the main result." [Gunnar Thor Magnússon, 2014]

"There are numerous research papers and popular scientific notes, video lectures, slides of talks, and web pages (the best way to begin surfing the Web is to visit the On-Line Encyclopedia of Integer Sequences) that are concerned with Farey sequences and their applications." [Andrey O. Matveev, 2017]

"This paper would have been an impossibility were it not for your database on integer sequences. It gave me many ideas, many of which flourished into theorems." [Angelo B. Mingarelli, 2007]

"An established tool for discovering bijections is the Online Encyclopedia of Integer Sequences (OEIS). This is a phenomenal database of sequences where the entrees are refereed, and there are many references to follow. The OEIS is located at http://www.oeis.org." [Marni Mishna, 2020]

"On computing various examples of those using Mathematica and studying the j-th coefficient of a_k(r) as a sequence using the On-Line Encyclopedia of Integer Sequences (OEIS), we made an explicit conjecture for the coefficients of a_k(r) and eventually proved it by quite a different route." [Pieter Moree and SS Eddin, 20916]

"We would like to thank Neil Sloane’s On-line Encyclopedia of Integer Sequences for directing us to references [4, 7, 21, 28]." [Eric T. Mortenson, 2017]

"Inspired by this connection [with two sequences in the OEIS] we were able to prove the following theorem ..." [H. Mühle, 2013]

• This is part of the series of OEIS Wiki pages that list works citing the OEIS.
• Additions to these pages are welcomed.
• But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
• If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
• Works are arranged in alphabetical order by author's last name.
• Works with the same set of authors are arranged by date, starting with the oldest.
• This section lists works in which the first author's name begins with M.
• The full list of sections is: .
• For further information, see the main page for Works Citing OEIS.

## References

1. Jun Ma, SM Ma, YN Yeh, Recurrence relations for binomial-Eulerian polynomials, arXiv preprint arXiv:1711.09016, 2017
2. Jun Ma, S Ma, YN Yeh, Z Xu, The cycle descent statistic on permutations, arXiv preprint arXiv:1512.01799, 2015
3. Shi-Mei Ma, Derivative polynomials and permutations by numbers of interior peaks and left peaks, Arxiv preprint arXiv:1106.5781, 2011; Discrete Math., 312 (2011), 405-412.
4. Shi-Mei Ma, An explicit formula for the number of permutations with a given number of alternating runs, Arxiv preprint arXiv:1110.6779, 2011 [Version 1 references the OEIS and sequence A059427; this reference was deleted in Version 2].
5. Shi-Mei Ma, A family of two-variable derivative polynomials for tangent and secant, arXiv:1204.4963v3 [math.CO], El. J. Combinat. 20 (1) (2013) #P11.
6. Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO]
7. S.-M. Ma, Enumeration of permutations by number of cyclic peaks and cyclic valleys, Arxiv preprint arXiv:1203.6264, 2012.
8. S.-M. Ma, On some binomial coefficients related to the evaluation of tan(nx), Arxiv preprint arXiv:1205.0735, 2012
9. S.-M. Ma, Polynomials with only real zeros and the Eulerian polynomials of type D, Arxiv preprint arXiv:1205.6242, 2012
10. Shi-Mei Ma, On γ-vectors and the derivatives of the tangent and secant functions, Bull. Aust. Math. Soc. 90 (2014), no. 2, 177-18, also arXiv:1304.6654.
11. Shi-Mei Ma, Enumeration of permutations by number of alternating runs, Discrete Math., 313 (2013), 1816-1822.
12. Ma, Shi-Mei Some combinatorial arrays generated by context-free grammars. European J. Combin. 34 (2013), no. 7, 1081-1091.
13. Shi-Mei Ma, Jun Ma, Jean Yeh, Yeong-Nan Yeh, The 1/k-Eulerian polynomials of type B, arXiv:2001.07833 [math.CO], 2020. (A008303, A008971)
14. Shi-Mei Ma, Jun Ma, Yeong-Nan Yeh, On certain combinatorial expansions of descent polynomials and the change of grammars, arXiv:1802.02861 [math.CO], 2018. (A008292, A060187, A101280, A182825)
15. Shi-Mei Ma, Jun Ma, Yeong-Nan Yeh, On certain combinatorial expansions of the Legendre-Stirling numbers. arXiv:1805.10998 [math.CO], 2018. (A006472, A025035)
16. Shi-Mei Ma, Jun Ma, Yeong-Nan Yeh, The alternating run polynomials of permutations, arXiv:1904.11437 [math.CO], 2019. (A012259)
17. Shi-Mei Ma, Jun Ma, Yeong-Nan Yeh, David-Barton type identities and alternating run polynomials, Academia Sinica (Taipei, 2019). PDF (A012259)
18. S.-M. Ma, T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, arXiv preprint arXiv:1409.6525, 2014
19. Shi-Mei Ma, T. Mansour, D. Callan, Some combinatorial arrays related to the Lotka-Volterra system, arXiv preprint arXiv:1404.0731, 2014
20. S.-M. Ma, T. Mansour, M. Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169, 2013
21. S.-M. Ma, T. Mansour and D. G. L. Wang, Combinatorics of Dumont differential system on the Jacobi elliptic functions, arXiv preprint arXiv:1403.0233, 2014.
22. Shi-Mei Ma, Toufik Mansour, David G.L. Wang, Yeong-Nan Yeh, Several variants of the Dumont differential system and permutation statistics, Science China Mathematics 60 (2018). PDF (A008303, A008971, A185411)
23. Shi-Mei Ma, T Mansour, HN Wang, The descent statistic on signed simsun permutations, arXiv preprint arXiv:1605.02618, 2016
24. Shi-Mei Ma, Yeong-Nan Yeh, Eulerian Polynomials, Stirling Permutations of the Second Kind and Perfect Matchings, in the Electronic Journal of Combinatorics, 24.4 (2017), 4-27. PDF
25. S.-M. Ma, H.-N. Wang, Enumeration of a dual set of Stirling permutations by their alternating runs, arXiv preprint arXiv:1506.08716, 2015
26. Shi-Mei Ma and Yeong-Nan Yeh, Derivative polynomials and enumeration of permutations by their alternating descents, Arxiv preprint arXiv:1504.02372, 2015.
27. S.-M. Ma, Y.-N. Yeh, Stirling permutations, cycle structures of permutations and perfect matchings, arXiv preprint arXiv:1503.06601v1, 2015 [The OEIS citation was dropped in version 2, although the sequence, A185411, is still the subject of the article.]
28. S.-M. Ma and Y.-M. Yeh, Enumeration of permutations by number of alternating descents, Discr. Math., 339 (2016), 1362-1367.
29. Shi-Mei Ma, Yeong-Nan Yeh, The Peak Statistics on Simsun Permutations, Elect. J. Combin., 23 (2106), P2.14; arXiv preprint arXiv:1601.06505, 2016
30. Shi-Mei Ma, YN Yeh, Simsun permutations, simsun successions and simsun patterns, arXiv preprint arXiv:1602.08999, 2016
31. Shi-Mei Ma, YN Yeh, Eulerian polynomials, perfect matchings and Stirling permutations of the second kind, arXiv preprint arXiv:1607.01311, 2016
32. Xiao Ma, Using Graph Enumeration and Topography Reasoning to Analyze Blocking in WDM Networks Without Wavelength Interchange, Thesis, M.S. in Telecommunications, Univ. Pittsburgh, 2012; PDF
33. Ma, Xinrong. "Magic determinants of Somos sequences and theta functions." Discrete Mathematics 310.1 (2010): 1-5.
34. Xue-Si Ma, Chao-Ping Chen, Inequalities and asymptotic expansions related to the generalized Somos quadratic recurrence constant, Journal of Inequalities and Applications (2018) 2018:147. doi:10.1186/s13660-018-1741-8
35. M. G. Maaß, Scheduling Independent and Identically Distributed Tasks with In-Tree Constraints on three Machines in Parallel, Diplomarbeit, Lehrstuhl für Effiziente Algorithmen, Institut für Informatik, TU München, Sep 2001.
36. M. Macauley, Braids and juggling patters, Thesis Harvey Mudd Col. (2003)
37. Matthew Macauley , Jon McCammond, Henning S. Mortveit, arXiv:0808.1238; Dynamics groups of asynchronous cellular automata, Journal of Algebraic Combinatorics, Vol 33, No 1 (2011), p 11-35. (A000032, A001608, A001609, A072328, A007040, A001644, A109377, A007039) doi:10.1007/s10801-010-0231-y
38. A. J. Macfarlane, Generating functions for integer sequences defined by the evolution of cellular automata with even rule numbers, 2016.
39. Alan J. Macfarlane, On generating functions of some sequences of integers defined in the evolution of the cellular automaton Rule 150, Preprint 2016; http://www.damtp.cam.ac.uk/user/ajm/Papers2016/CellularAutomatonRule150.ps
40. A. MacFie, Software for enumerative and analytic combinatorics, PDF, 2012.
41. A. MacFie and D. Panario, Random Mappings with Restricted Preimages, in Progress in Cryptology-LATINCRYPT 2012, LNCS 7533, pp. 254-270, 2012.
42. John Machacek, Egyptian Fractions and Prime Power Divisors, arXiv:1706.01008 [math.NT], 2017.
43. Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, 97 (No. 540, 2013), 495-498.
44. Des MacHale and Joseph Manning (2015). Maximal runs of strictly composite integers. The Mathematical Gazette, 99, pp 213-219. doi:10.1017/mag.2015.28.
45. Des MacHale, J Manning, Converse Lagrange Theorem Orders and Supersolvable Orders, Journal of Integer Sequences, 2016, Vol. 19, #16.8.7.
46. A. Machiavelo, Rogerio Reis, O problema do totobola, Bol. SPM 61 (2009) 39-45.
47. António Machiavelo, Rogério Reis, Nikolaos Tsopanidis, Report on Zhi-Wei Sun’s “1-3-5 conjecture” and some of its refinements, arXiv:2005.13526 [math.NT], 2020. (A271518)
48. António Machiavelo, Nikolaos Tsopanidis, Zhi-Wei Sun’s 1-3-5 Conjecture and Variations, arXiv:2003.02592 [math.NT], 2020. (Cited by authors in A271518)
49. Dana Mackenzie, 2184: An absurd (and adsurd) tale, Integers (2018) 18, Article #A33. Abstract (A076427)
50. James J. Madden, A Generating Function for the Distribution of Runs in Binary Words, arXiv:1707.04351 [math.CO], 2017.
51. J. Maddock, Level sets of the Takagi function: Haussdorff dimension, Monaths. Math. 160 (2) (2010) 167-186 doi:10.1007/s00605-009-0109-z
52. A. Mader, The Use of Experimental Mathematics in the Classroom, PDF
53. J. Madrigal-Melchor, A. Enciso-Muñoz and D. A. Contreras-Solorio, Acoustic transmittance of an aperiodic deterministic multilayer structure, IOP Conf. Ser.: Mater. Sci. Eng. 45 (2013), 012030 doi:10.1088/1757-899X/45/1/012030
54. Parthasarathy Madhusudan, Dirk Nowotka, Aayush Rajasekaran, Jeffrey Shallit, Lagrange's Theorem for Binary Squares, arXiv:1710.04247 [math.NT], 2017. (A020330, A175468)
55. M. Madritsch, S. Wagner, A central limit theorem for integer partitions, Montash. Math. 161 (1) (2010) 85-114 doi:10.1007/s00605-009-0126-y
56. Arman Maesumi, Triangle Inscribed-Triangle Picking. arXiv:1804.11007 [math.GM]. (A279055)
57. María Merino Maestre and Yosu Yurramendi Mendizabal, Lauki sareko patroi bitarren kalkulua, oinarrizko konbinatoriaren eskutik, Ekaia 27 (2014), pp. 237-262.
58. Houssem MAGHREBI, Claude CARLET, Sylvain GUILLEY1 and Jean-Luc DANGER, Optimal First-Order Masking with Linear and Non-Linear Bijections, PDF 2012.
59. Sara Magliacane, Logics for causal inference under uncertainty, Dissertation, Vrije Universiteit Amsterdam, 2017.
60. Gunnar Thor Magnússon, The inner product on exterior powers of a complex vector space, arXiv preprint arXiv:1401.4048, 2014 [I'll say a little about how we originally found the main result of this paper in case the reader is curious. ... we calculated ... with the help of computer algebra software, from which we guessed that the coefficients were in fact independent of the vector space. Searching the OEIS then revealed the coefficients probably formed a known sequence, and from there it was not diffcult to prove the main result.]
61. H. Magnusson and H. Ulfarsson, Algorithms for discovering and proving theorems about permutation patterns, arXiv preprint arXiv:1211.7110, 2012
62. Priya Mahadevan, Dmitri Krioukov, Kevin Fall et al., Systematic Topology Analysis and Generation Using Degree Correlations (2006), arXiv:cs/0605007.
63. Pankaj Jyoti Mahanta, Manjil P. Saikia, and Daniel Yaqubi, Some properties of Zumkeller numbers and k-layered numbers, Journal of Number Theory (2020). doi:10.1016/j.jnt.2020.05.003 (A083207)
64. Ali Assem Mahmoud, On the Asymptotics of Connected Chord Diagrams, University of Waterloo (Ontario, Canada 2019). Abstract (A000698, A000699, A088221)
65. Rabie A. Mahmoud, Hardware Implementation of Binary Kolakoski Sequence, Research Gate, 2015: PDF
66. James R. Mahoney, Tree Graphs and Orthogonal Spanning Tree Decompositions, PhD Dissertation, Portland State Univ., 2016; http://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=3953&context=open_access_etds
67. W Mahoney, A Parakh, Towards a New Quasigroup Block Cipher for a Single-Chip FPGA Implementation, in Proc. 2015 24th International Conference on Computer Communication and Networks (ICCCN), pp. 1-6, IEEE Press, 2015; doi:10.1109/ICCCN.2015.7288479
68. Maier, Robert S., Algebraic hypergeometric transformations of modular origin. Trans. Amer. Math. Soc. 359 (2007), no. 8, 3859-3885.
69. Jon Maiga, Upper bound of Fibonacci entry points, (2019). PDF (A000045, A001221, A001615, A034444, A079343)
70. Klaus Mainzer, How Safe Is Artificial Intelligence?, Artificial intelligence - When do machines take over?, Technik im Fokus. Springer (Berlin, Heidelberg, Germany 2019), 243-266. doi:10.1007/978-3-662-59717-0_11
71. Rajarshi Maiti, Some Results on Primes of the Form (K+1)(K+2)(K+3)+-1, International Journal of Mathematics Research (2018) Vol. 10, No. 2, 81-85. PDF (A293861)
72. Matt Majic, Electrostatic T-matrix for a torus on bases of toroidal and spherical harmonics, arXiv:1904.10807 [physics.comp-ph], 2019.
73. Matt Majic, Eric C. Le Ru, Relationships between solid spherical and toroidal harmonics, arXiv:1802.03484 [math-ph], 2018.
74. Igor Makhlin, Gröbner fans of Hibi ideals, generalized Hibi ideals and flag varieties, arXiv:2003.02916 [math.CO], 2020. (A001793, A049611, A084851)
75. Aleksandr Maksimenko, 2-neighborly 0/1-polytopes of dimension 7, arXiv:1904.03638 [math.CO], 2019. (A114289)
76. R. Malafi and C. Tamizharasi, Power Sums Through Mathematical Induction, International Journal of Current Research and Review, vol. 9, issue 10, 2017.
77. Gregorio Malajovich, Complexity of sparse polynomial solving: homotopy on toric varieties and the condition metric, arXiv preprint arXiv:1606.03410, 2016
78. M. S. Malaudzi, O. Akinyemi, q-enumeration of alternating permutations of odd length, J. Disc. Math. Sci. Crypt. 13 (1) (2010) 45-67 doi:10.1080/09720529.2010.10698276
79. A. V. Maleev, A. A. Mokrova, A. V. Shutov, Coordination sequences of the 2-uniform graphs (Russian), Algebra, number theory and discrete geometry: modern problems and application of past problems (2019), Proceedings of the XVI International Conference in honor of the 80th birthday of Professor Michel Deza, 262-266. () PDF (A301299, A301301, A301724, A301726) (А. B. Малеев, А. А. Мокрова, А.В.Шутов, Координационные последовательности 2-однородных графов, "Алгебра,теория чисели дискретная геометрия: современные проблемы,приложения и проблемы истории" (2019) Материалы XVI Международной конференции, посвященной 80-летию со дня рождения профессора Мишеля Деза, 262-266.)
80. Sepideh Maleki, Martin Burtscher, Automatic Hierarchical Parallelization of Linear Recurrences, Proceedings of the 23rd International Conference on Architectural Support for Programming Languages and Operating Systems, ACM, 2018. PDF, also doi:10.1145/3173162.3173168 [math.NT], 2018. (A000073, A001590)
81. J. Malenfant, Factorization of and Determinant Expressions for the Hypersums of Powers of Integers, Arxiv preprint arXiv:1104.4332, 2011.
82. J. Malenfant, arXiv:1106.2753 A determinant formula for the partition function p(7k+a)]
83. J. Malenfant, Generalizing Ramanujan's J Functions, arXiv preprint arXiv:1109.5957, 2011
84. J. Malenfant, On the Matrix-Element Expansion of a Circulant Determinant, arXiv preprint arXiv:1502.06012, 2015
85. Branko J. Malesevic, Some combinatorial aspects of composition of a set of functions (2004), arXiv:math/0409287.
86. Branko J. Malesevic, Some considerations in connection with Kurepa's function (2004), arXiv:math/0406235.
87. Branko J. Malesevic, Some considerations in connection with alternating Kurepa's function (2004), arXiv:math/0406236.
88. Branko Malesevic, Some inequalities for Kurepa's function (2005), arXiv:math/0506205.
89. Branko Malesevic, Some inequalities for alternating Kurepa's function (2005), arXiv:math/0506207.
90. Branko Malesevic, Yue Hu, Cristinel Mortici, Accurate Estimates of (1+x)^{1/x} Involved in Carleman Inequality and Keller Limit, arXiv:1801.04963 [math.CA], 2018. (A055505, A193815)
91. Branko J. Malesevic and Ivana V. Jovovic, The Compositions of the Differential Operations and Gateaux Directional Derivative (2007), arXiv:0706.0249. J. Integer Sequences, Volume 10, 2007, Article 07.8.2.
92. Romanos Diogenes Malikiosis, Formal duality in finite cyclic groups, arXiv:1704.04183 [math.NT], 2017.
93. Nicolas Mallet, Trial for a proof of the Syracuse conjecture, arXiv preprint arXiv:1507.05039, 2015
94. James Mallos, A 6-Letter 'DNA' for Baskets with Handles, Mathematics (2019) Vol. 7, No. 2, 165. doi:10.3390/math7020165 (A000108, A005568, A064037)
95. Colin L. Mallows and Lou Shapiro, "Balls on the Lawn", J. Integer Sequences, Volume 2, 1999, Article 99.1.5.
96. C. L. Mallows and N. J. A. Sloane, Two-graphs, switching classes and Euler graphs are equal in number, SIAM J. Appl. Math., 28 (1975), 876-880.
97. C. L. Mallows, R. J. Vanderbei, Which Young Tableaux Can Represent an Outer Sum?, Journal of Integer Sequences, Vol. 18, 2015, #15.9.1.
98. Alexander Malkis, Reachability in Multithreaded Programs Is Polynomial in the Number of Threads (Version with Proofs), Technical University of Munich (Germany, 2019). PDF (A290642)
99. Jeevan Maloth, Approximate approach to sum of n!, International Journal of Mathematical Archive, 7(3), 2016, 1-4
100. Maltenfort, Michael. "Pascal Functions." The American Mathematical Monthly 125.2 (2018): 115-129.
101. Andrei Malyutin, On the question of genericity of hyperbolic knots, arXiv preprint arXiv:1612.03368, 2016
102. Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), 227-238; PDF
103. V. Manca, Enumerating membrane structures, in: Membrane computing, WMC9, LNCS 5391 (2009) 292-298 doi:10.1007/978-3-540-95885-7_21
104. V. Manca, A recurrent enumeration of free hypermultisets, in: Computation, coorperation and life, LNCS 6610 (2011) 16-23, doi:10.1007/978-3-642-20000-7_3
105. Dominique Manchon, On the mathematics of rooted trees, Université Clermont-Auvergne (France, 2019). PDF (A000081)
106. K. Manes, A. Sapounakis, I. Tasoulas, P. Tskiouras, doi:10.1016/j.jspi.2010.12.022 Counting strings at height j in Dyck paths, J. Stat. Plan. Inf. 141 (6) (2011) 2100-2107
107. Manes, K.; Sapounakis, A.; Tasoulas, I.; Tsikouras, P. General results on the enumeration of strings in Dyck paths. Electron. J. Combin. 18 (2011), no. 1, Paper 74, 22 pp
108. Manes, K.; Sapounakis, A.; Tasoulas, I.; Tsikouras, P. Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
109. K Manes, A Sapounakis, I Tasoulas, P Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv preprint arXiv:1510.01952, 2015.
110. K. Manes, I. Tasoulas, A. Sapounakis, P. Tsikouras, Counting pairs of noncrossing binary paths: A bijective approach, Discrete Mathematics (2019) Vol. 342, Issue 2, 352-359. doi:10.1016/j.disc.2018.10.016
111. K. Manes, I. Tasoulas, A. Sapounakis, P. Tsikouras, Chains of binary paths and shifted tableaux, arXiv:1911.13013 [math.CO], 2019.
112. M Manetti, G Ricciardi, Universal Lie formulas for higher antibrackets, arXiv preprint arXiv:1509.09032, 2015
113. M M Mangontarum, O I Cauntongan, A P Macodi-Ringia, The Noncentral Version of the Whitney Numbers: A Comprehensive Study, International Journal of Mathematics and Mathematical Sciences, Volume 2016, Article ID 6206207, 16 pages; doi:10.1155/2016/6206207
114. J. Mangual, McMahon's Formula via Free Fermions, arXiv preprint arXiv:1210.7109, 2012
115. Arun P. Mani and Rebecca J. Stones, Congruences for weighted number of labeled forests, INTEGERS 16 (2016). #A17.
116. Arun P. Mani, RJ Stones, The Number of Labeled Connected Graphs Modulo Prime Powers, SIAM Journal on Discrete Mathematics, Vol. 30, No. 2, pp. 1046–1057
117. T. Manneville, V. Pilaud, Compatibility fans for graphical nested complexes, arXiv preprint arXiv:1501.07152, 2015
118. Manolescu, Ciprian, Link homology theories from symplectic geometry. Adv. Math. 211 (2007), no. 1, 363-416.
119. Toufik Mansour, "Counting Peaks at Height k in a Dyck Path", J. Integer Sequences, Volume 5, 2002, Article 02.1.1.
120. T. Mansour, Restricted 132-Dumont permutations, arXiv:math/0209379; Australasian Journal of Combinatorics, 2003.
121. Mansour, Toufik, Restricted 132-alternating permutations and Chebyshev polynomials. Ann. Comb. 7 (2003), no. 2, 201-227.
122. Mansour, Toufik, Combinatorial methods and recurrence relations with two indices. J. Difference Equ. Appl. 12 (2006), no. 6, 555-563.
123. Mansour, Toufik, The enumeration of permutations whose posets have a maximum element. Adv. in Appl. Math. 37 (2006), no. 4, 434-442.
124. Toufik Mansour, "Statistics on Dyck Paths", J. Integer Sequences, Volume 9, 2006, Article 06.1.5.
125. Mansour, Toufik, Recurrence relations with two indices and even trees. J. Difference Equ. Appl. 13 (2007), no. 1, 47-61.
126. T. Mansour, Enumeration of words by the sum of differences between adjacent letters Discr. Math. Theor. Comput. Sci 11 (1) (2009) 173
127. T. Mansour, A. O. Munagi, Block-connected set partitions, Eur. J. Combinat. 31 (2010) 887-902 doi:10.1016/j.ejc.2009.07.001
128. T. Mansour, A. O. Munagi. Alternating subsets modulo m. Rocky Mt. J. Math. 42 (4) (2012) 1313 doi:10.1216/RMJ-2012-42-4-1313
129. T. Mansour, A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.
130. Mansour, Toufik; Munagi, Augustine; Shattuck, Mark; Recurrence relations and two-dimensional set partitions. J. Integer Seq. 14 (2011), no. 4, Article 11.4.1, 17 pp.
131. Toufik Mansour, Reza Rastegar, On typical triangulations of a convex n-gon, arXiv:1911.04025 [math.CO], 2019. (A001263)
132. Toufik Mansour, Reza Rastegar, Alexander Roitershtein, Gökhan Yıldırım, The longest increasing subsequence in involutions avoiding 3412 and another pattern, arXiv:2001.10030 [math.CO], 2020. (A001263)
133. T Mansour, R Rayan, On Cauchy-Euler's differential equation involving a para-Grassmann variable, Journal of Mathematical Physics, 59, 103508 (2018); doi:10.1063/1.5047565
134. T. Mansour, M. Schork, doi:10.1080/10236190802282677 The solution of the recurrence relation f_n(t) = a_n(t)f_{n-1}(t)-b_n(t)(d/dt)f_{n-1}(t), J. Difference Equ. Appl. 15 (2009) 679-691
135. T. Mansour and M. Schork, Generalized Bell numbers and algebraic differential equations, Pure Math. Appl.(PU. MA), Vol. 23 (2012), No. 2, pp. 131-142; PDF
136. Mansour, Toufik; Schork, Matthias doi:10.1016/j.amc.2013.04.010 The generalized Touchard polynomials revisited. Appl. Math. Comput. 219, No. 19, 9978-9991 (2013).
137. Toufik Mansour, Matthias Schork and Simone Severini, A generalization of boson normal ordering, Physics Letters A, Volume 364, Issues 3-4, 30 April 2007, Pages 214-220.
138. Toufik Mansour, Matthias Schork and Simone Severini, Noncrossing normal ordering for functions of boson operators (2006), arXiv:quant-ph/0607074; International Journal of Theoretical Physics, Volume 47, Number 3 / March, 2008.
139. Mansour, Toufik; Schork, Matthias; Shattuck, Mark On a new family of generalized Stirling and Bell numbers. Electron. J. Combin. 18 (2011), no. 1, Paper 77, 33 pp.
140. Mansour, Toufik; Schork, Matthias; Shattuck, Mark. Catalan numbers and pattern restricted set partitions. Discrete Math. 312 (2012), no. 20, 2979--2991. MR2956089
141. Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771.
142. Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
143. Toufik Mansour, Matthias Schork and Yidong Sun, "Motzkin Numbers of Higher Rank: Generating Function and Explicit Expression", J. Integer Sequences, Volume 10, 2007, Article 07.7.4.
144. Toufik Mansour and Simone Severini, Enumeration of \$(k,2)\$-noncrossing partitions (2008); arXiv:0808.1157; Discrete Math., 308 (2008), 4570-4577.
145. Toufik Mansour, Armend Sh. Shabani, Bargraphs in bargraphs, Turkish Journal of Mathematics (2018) Vol. 42, Issue 5, 2763-2773. doi:10.3906/mat-1803-113 (A001787, A076791, A102301, A110971, A298637)
146. Toufik Mansour, Armend Sh. Shabani, Enumerations on bargraphs, Discrete Math. Lett. (2019) Vol. 2, 65-94. PDF (A001168, A211978)
147. Toufik Mansour and Mark Shattuck, Pattern avoiding partitions and Motzkin left factors, CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, Volume 9, Number 5 (2011), 1121-1134, doi:10.2478/s11533-011-0057-4
148. Toufik Mansour and Mark Shattuck, A RECURRENCE RELATED TO THE BELL NUMBERS, INTEGERS 11 (2011), #A67
149. Mansour, Toufik; Shattuck, Mark Restricted partitions and q-Pell numbers. Cent. Eur. J. Math. 9 (2011), no. 2, 346-355.
150. Toufik Mansour and Mark Shattuck, Counting Dyck Paths According to the Maximum Distance Between Peaks and Valleys, Journal of Integer Sequences, Vol. 15 (2012), #12.1.1.
151. Toufik Mansour and Mark Shattuck, Pattern Avoiding Partitions, Sequence A054391 and the Kernel Method, Applications and Applied Mathematics, Vol. 6, Issue 2 (December 2011), pp. 397-411; PDF
152. Toufik Mansour and Mark Shattuck, A combinatorial proof of a result for permutation pairs, Central European Journal of Mathematics, Volume 10, Number 2 (2012), 797-806, doi:10.2478/s11533-012-0001-2.
153. Toufik Mansour and Mark Shattuck, Free rises, restricted partitions, and q-Fibonacci polynomials, AFRIKA MATEMATIKA, 2012, doi:10.1007/s13370-011-0060-8.
154. Toufik Mansour and Mark Shattuck, Pattern-avoiding set partitions and Catalan numbers, Electronic Journal of Combinatorics, 18(2) (2012), #P34.
155. T. Mansour and M. Shattuck, Restricted partitions and generalized Catalan numbers, PU. M. A., Vol. (2011), No. 2, pp. 239-251; PDF
156. T. Mansour and M. Shattuck, Some enumerative results related to ascent sequences, Arxiv preprint arXiv:1207.3755, 2012
157. T. Mansour and M. Shattuck, A q-analog of the hyperharmonic numbers, Afrika Matematika, Sept. 2012; doi:10.1007/s13370-012-0106-6
158. T. Mansour and M. Shattuck, Partial matchings and pattern avoidance, Appl. Anal. Discrete Math. 7 (2013) 25 doi:10.2298/AADM121130023M
159. T. Mansour and M. Shattuck, Polynomials whose coefficients are k-Fibonacci numbers, Annales Mathematicae et Informaticae, 40 (2012) pp. 57-76; http://ami.ektf.hu.
160. T. Mansour and M. Shattuck, Polynomials whose coefficients are generalized Tribonacci numbers, Applied Mathematics and Computation, Volume 219, Issue 15, 1 April 2013, Pages 8366-8374.
161. T. Mansour and M. Shattuck, Generalization of a statistic on linear domino arrangements, Online Journal of Analytic Combinatorics, 2013
162. Mansour, Toufik; Shattuck, Mark A combinatorial approach to a general two-term recurrence. Discrete Appl. Math. 161 (2013), no. 13-14, 2084-2094.
163. T. Mansour, M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
164. T. Mansour, M. Shattuck, Chebyshev Polynomials and Statistics on a New Collection of Words in the Catalan Family, arXiv preprint arXiv:1407.3516, 2014
165. T. Mansour, M. Shattuck, A monotonicity property for generalized Fibonacci sequences, arXiv preprint arXiv:1410.6943, 2014
166. Toufik Mansour and Mark Shattuck, Pattern avoidance in inversion sequences, Pure Mathematics and Applications, 25(2):157-176, 2015. doi:10.1515/puma-2015-0016
167. T. Mansour and M. Shattuck, Counting permutations by the number of successors within cycles, Discr. Math., 339 (2016), 1368-1376.
168. Toufuk Mansour, M Shattuck, Set partitions and m-excedances, Notes on Number Theory and Discrete Mathematics, Print ISSN 1310–5132, Online ISSN 2367–8275, Vol. 22, 2016, No. 1, 42–54
169. Toufik Mansour and Mark Shattuck, Avoidance of type (1,2) patterns by Catalan words, Turkish Journal of Analysis and Number Theory, May 2017.
170. Toufik Mansour and Mark Shattuck, Nine classes of permutations enumerated by binomial transform of Fine's sequence, Discrete Applied Mathematics, Vol. 226, 31 July 2017, p. 94-105. doi:10.1016/j.dam.2017.04.015
171. Toufik Mansour and Mark Shattuck, A polynomial generalization of some associated sequences related to set partitions, Periodica Mathematica Hungarica, December 2017, Volume 75, Issue 2, pp. 398-412. doi:10.1007/s10998-017-0209-9
172. Toufik Mansour, Mark Shattuck, Combinatorial parameters on bargraphs of permutations, Transactions on Combinatorics, Article 1, Vol. 7, Issue 2, June 2018, Page 1-16. doi:10.22108/toc.2017.102359.1483 (A059419)
173. Toufik Mansour, Mark Shattuck, A generalized class of restricted Stirling and Lah numbers, Mathematica Slovaca (2018) Vol. 68, Issue 4, 727–740. doi:10.1515/ms-2017-0140
174. Mansour, Toufik, Mark Shattuck, and Stephen Wagner. "Counting subwords in flattened permutations." Discrete Math., 338 (2015), 1989-2005.
175. Toufik Mansour, Mark Shattuck, Visibility in pattern-restricted permutations, Journal of Difference Equations and Applications (2020) Vol. 26, Issue 5, 657-675. doi:10.1080/10236198.2020.1780220
176. T. Mansour, M. Shattuck and D. G. L. Wang, Recurrence relations for patterns of type (2, 1) in flattened permutations, arXiv preprint arXiv:1306.3355, 2013
177. T. Mansour, M. Shattuck and D. G. L. Wang, Counting subwords in flattened permutations, arXiv preprint arXiv:1307.3637, 2013
178. Toufik Mansour and Mark Shattuck, Counting water cells in bargraphs of compositions and set partitions. Applicable Analysis and Discrete Mathematics, 2018. doi:10.2298/AADM170428010M (A000110, A000587, A008277)
179. Toufik Mansour, Howard Skogman, Rebecca Smith, Passing through a stack k times, arXiv:1704.04288 [math.CO], 2017.
180. Toufik Mansour, Howard Skogman, Rebecca Smith, Passing through a stack k times with reversals, arXiv:1808.04199 [math.CO], 2018. (A000108, A000111, A163747, A163982, A165543)
181. Toufik Mansour and Yidong Sun, Identities involving Narayana polynomials and Catalan numbers (2008); arXiv:0805.1274; Discrete Mathematics, Volume 309, Issue 12, 28 June 2009, Pages 4079-4088.
182. Toufik Mansour, Gökhan Yıldırım, Permutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequences, arXiv:1808.05430, 2018.
183. Toufik Mansour, Gökhan Yıldırım, Enumerations of bargraphs with respect to corner statistics, arXiv:1808.01596 [math.CO], 2018.
184. Toufik Mansour, Gökhan Yıldırım, Permutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequences, arXiv:1808.05430 [math.CO], 2018. (A001263)
185. Toufik Mansour, Gökhan Yilidirim, Longest increasing subsequences in involutions avoiding patterns of length three, Turkish Journal of Mathematics (2019). HTML, doi:10.3906/mat-1901-81 (A014314, A132890, A132891)
186. A. Mansuy. Grafting algebras. Bull. Sci. Math. 136, No. 8, 904-939 (2012). doi:10.1016/j.bulsci.2012.03.009
187. Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, Marinella Sciortino, Luca Versari, Measuring the clustering effect of BWT via RLE, Theoretical Computer Science, vol. 698, 25 October 2017, p. 79-87. doi:10.1016/j.tcs.2017.07.015
188. Guo-Shuai Mao, Proof of a conjecture of Adamchuk, arXiv:2003.09810 [math.NT], 2020. (A066796)
189. Guo-Shuai Mao, On a supercongruence conjecture of Z.-W. Sun, arXiv:2003.14221 [math.NT], 2020. (A066796)
190. Guo-Shuai Mao, Roberto Tauraso, Three pairs of congruences concerning sums of central binomial coefficients, arXiv:2004.09155 [math.NT], 2020. (A066796)
191. E. Marberg, Actions and identities on set partitions, Arxiv preprint arXiv:1107.4173, 2011 and Electron. J. Comb. 19 (1) (2012) P28.
192. Marberg, Eric A supercharacter analogue for normality. J. Algebra 332 (2011), 334-365.
193. Marberg, Eric Combinatorial methods of character enumeration for the unitriangular group. J. Algebra 345 (2011), 295-323.
194. E. Marberg, How to compute the Frobenius-Schur indicator of a unipotent character of a finite Coxeter system, Arxiv preprint arXiv:1202.1311, 2012 and Adv. Math. 240 (2013) 484-519 doi:10.1016/j.aim.2013.02.023
195. Eric Marberg, Crossings and nestings in colored set partitions, Arxiv preprint arXiv:1203.5738, 2012
196. Marberg, Eric, Heisenberg characters, unitriangular groups, and Fibonacci numbers. J. Combin. Theory Ser. A 119 (2012), no. 4, 882-903.
197. Eric Marberg, On some actions of the 0-Hecke monoids of affine symmetric groups, arXiv:1709.07996 [math.CO], 2017. Also in Proceedings of the 30th Conference on Formal Power Series and Algebraic Combinatorics (Hanover), Séminaire Lotharingien de Combinatoire 80B (2018) Article #65. PDF (A034807, A211867, A246437)
198. Eric Marberg, Linear compactness and combinatorial bialgebras, arXiv:1810.00148 [math.CO], 2018.
199. Eric Marberg, Brendan Pawlowski, Stanley symmetric functions for signed involutions, arXiv:1806.11208 [math.CO], 2018. (A001405)
200. Robert E. Marc, Bryan W. Jones, J. Scott Lauritzen, Carl B. Watt and James R. Anderson, Building retinal connectomes, Current Opinion in Neurobiology, Volume 22, Issue 4, August 2012, Pages 568-574.
201. T. Marchant, Cooperative phenomena in crystals and the probability of tied Borda count elections, Discrete Applied Mathematics, 119, pp. 265-271 (2002) doi:10.1016/S0166-218X(01)00308-0.
202. Jean-Francois Marckert and Gregory Miermont, The CRT is the scaling limit of unordered binary trees (2009) arXiv:0902.4570
203. Ana Marco, J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, 30 (2015), #7.
204. Cameron Marcott, On the Relationship between Pipe Dreams and Permutation Words, The Electronic Journal of Combinatorics, 20(3) (2013), #P40
205. Barbara H. Margolius, "Permutations with Inversions", J. Integer Sequences, Volume 4, 2001, Article 01.2.4.
206. B. H. Margolius, Transient and periodic solution to the time-inhomogeneous quasi-birth death process, Queueing Systems, Volume 56, Numbers 3-4 / August, 2007.
207. B.H. Margolius, Periodic solution to the time-inhomogeneous multi-server Poisson queue, Operations Research Letters, Volume 35, Issue 1, January 2007, Pages 125-138.
208. C. Marijuan, Finite topologies and digraphs, Proyecciones 29 (3) (2010) 291-307 doi:10.4067/S0716-09172010000300008
209. I. Marin and E. Wagner, A cubic defining algebra for the Links-Gould polynomial. Arxiv preprint arXiv:1203.5981, 2012
210. D. Marinov and R. Radoicic, Counting 1324-avoiding Permutations, Electronic Journal of Combinatorics, Volume 9(2), 2002-2003, article #R13.
211. Luca Mariot, Cryptography by Cellular Automata, 2017. PDF. (A002450)
212. Luca Mariot, Orthogonal labelings in de Bruijn graphs, IWOCA 2020 – Open Problems Session, Delft University of Technology (Netherlands). PDF (A002450)
213. Mariot, Luca, Enrico Formenti, and Jean-Marc Fédou. "The number of coprime/non-coprime pairs of polynomials over F2 with degree n and nonzero constant term." (2016).
214. Luca Mariot, E Formenti, A Leporati, CellularAutomata, Latin Squares and Secret Sharing Schemes, Poster, 2016; PDF
215. Luca Mariot, Maximilien Gadouleau, Enrico Formenti, Alberto Leporati, Mutually Orthogonal Latin Squares based on Cellular Automata, arXiv:1906.08249 [cs.DM], 2019. (A002450)
216. G. Markowsky, A method for deriving hypergeometric and related identities from the H^2 Hardy norm of conformal maps, Arxiv preprint arXiv:1205.2458, 2012
217. L. Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv preprint arXiv:1210.3829, 2012
218. Marques, Diego On the spacing between terms of generalized Fibonacci sequences. Colloq. Math. 134 (2014), no. 2, 267-280.
219. D. Marques, On Generalized Cullen and Woodall Numbers That are Also Fibonacci Numbers, Journal of Integer Sequences, 17 (2014), #14.9.4.
220. Diego Marques and Pavel Trojovsky, On Divisibility of Fibonomial Coe#cients by 3, Journal of Integer Sequences, Vol. 15 (2012), #12.6.4.
221. Marques, Diego; Trojovsky, Pavel On some new identities for the Fibonomial coefficients. Math. Slovaca 64 (2014), no. 4, 809-818.
222. Diego Marques and Pavel Trojovsky, The order of appearance of the product of five consecutive Lucas numbers, Tatra Mountains Math. Publ. 59 (2014), 65–77; doi:10.2478/tmmp-2014-0019
223. Robert J. Marsh, Paul Martin, Tiling bijections between paths and Brauer diagrams, Journal of Algebraic Combinatorics, Vol 33, No 3 (2011), p 427–453 doi:10.1007/s10801-010-0252-6. (A001147)
224. Marsh, Robert J.; Schroll, Sibylle A circular order on edge-coloured trees and RNA m-diagrams. Adv. in Appl. Math. 54 (2014), 11-26.
225. S. Marsh, J. B. Wang, Combinatorial optimization via highly efficient quantum walks, Physical Review Research (2020) Vol. 2, Article 023302. doi:10.1103/PhysRevResearch.2.023302 There are a wide range of integer sequences with indexing and un-indexing algorithms (or equivalently an efficient closed-form expression for the nth element of the sequence a(n), where the inverse operation is also efficiently computable). A comprehensive list of such sequences can be found on the On-Line Encyclopedia of Integer Sequences (OEIS)...
226. Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017. PDF (A000295, A001924, A104712)
227. Stuart M. Marshall, Douglas Moore, Alastair R. G. Murray, Sara I. Walker, Leroy Cronin, Quantifying the pathways to life using assembly spaces, arXiv:1907.04649 [cs.AI], 2019. (A003313)
228. Matthieu Martel, Mohamed Amine Najahi, Guillaume Revy. Trade-offs of certified fixed-point code synthesis for linear algebra basic blocks. 2016. <lirmm-01279628>
229. Carlos Martin, Generation and analysis of lamplighter programs, arXiv:1707.02652 [cs.DM], 2017.
230. G. Martin, Farmer Ted goes natural, Math. Mag. 72 (1999), no. 4, 259-276.
231. Martin, Jeremy L. The slopes determined by n points in the plane. Duke Math. J. 131 (2006), no. 1, 119-165 (also arXiv arXiv:math.AG/0302106, but beware errors).
232. Martin, Jeremy L.; Savitt, David; Singer, Ted, Harmonic algebraic curves and noncrossing partitions. Discrete Comput. Geom. 37 (2007), no. 2, 267-286.
233. J. L. Martin, J. D. Wagner, Updown numbers and the initial monomials of the slope variety, Elect. J. Combinat 16 (2009) #R82
234. J. L. Martin and J. D. Wagner, On the Spectra of Simplicial Rook Graphs, arXiv preprint arXiv:1209.3493, 2012 ["Unexpectedly, its dimension appears to be the Mahonian number M(d; n) of permutations in Sd with exactly n inversions (sequence A008302 in Sloane [12])"].
235. Paul P. Martin, Siti Fatimah Zakaria, Zeros of the 3-state Potts model partition function for the square lattice revisited, Journal of Statistical Mechanics: Theory and Experiment (2019). doi:10.1088/1742-5468/ab2905
236. R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318.
237. Martin, Richard J., and Michael J. Kearney. "Integral representation of certain combinatorial recurrences," Combinatorica: 35:3 (2015), 309-315.
238. U. Martin, The social machine of mathematics, 2013.
239. Ursula Martin, Computational logic and the social, Journal of Logic and Computation, 2014; doi:10.1093/logcom/exu036.
240. Ursula Martin, Alison Pease, Mathematical practice, crowdsourcing, and social machines, arXiv:1305.0900
241. U. Martin and A. Pease, What does mathoverflow tell us about the production of mathematics?, arXiv preprint arXiv:1305.0904, 2013.
242. Víctor Martín Chabrera, An algebraic fractal approach to Collatz Conjecture, Bachelor tesis, Universitat Politècnica de Catalunya (Barcelona, 2019). PDF (A119733)
243. Antonio Roldán Martínez, Sucesiones, 2014.
244. Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv preprint arXiv:1609.08106, 2016.
245. Ivica Martinjak, Dajana Stanić, A Short Combinatorial Proof of Derangement Identity, arXiv:1711.04537 [math.CO], 2017. (A000166)
246. S Martins Filho, Discrete Calculus of Sequences, arXiv preprint arXiv:1606.02182, 2016
247. Spyridon Martzoukos, Combinatorial and Compositional Aspects of Bilingual Aligned Corpora, Dissertation, Univ. Amsterdam, October 2016; https://pure.uva.nl/ws/files/2774871/177241_Martzoukos_thesis_complete.pdf
248. Jeremy Marzuola and Andy Miller, Counting numerical sets with no small atoms (2008); arXiv:0805.3493 and J. Comb. Theory A 117 (6) (2010) 650 doi:10.1016/j.jcta.2010.03.002
249. Annalisa Marzuoli, Mario Rasetti, Computing spin networks, Annals of Physics, Volume 318, Issue 2, August 2005, Pages 345-407.
250. E. Masehian, H. Akbaripour, N. Mohabbati-Kalejahi, Landscape analysis and efficient metaheuristics for solving the n-queens problem, Computational Optimization and Applications, 2013; doi:10.1007/s10589-013-9578-z
251. E. Masehian, H. Akbaripour, N. Mohabbati-Kalejahi, Solving the n Queens Problem using a Tuned Hybrid Imperialist Competitive Algorithm, 2014.
252. A. A. Masharov, R. A. Sharipov, A strategy of numeric search for perfect cuboids in the case of the second cuboid conjecture, preprint arXiv:1504.07161, 2015. (A031173, A031174, A031175)
253. Krzysztof Maslanka, Effective method of computing Li's coefficients and their properties (2004), arXiv:math/0402168.
254. Krzysztof Maślanka, Analytical Representations of Divisors of Integers, arXiv:1702.07876 [math.GM], 2017.
255. N. V. Maslova, On the coincidence of Grünberg-Kegel graphs of a finite simple group and its proper subgroup, Proceedings of the Steklov Institute of Mathematics, April 2015, Volume 288, Issue 1 Supplement, pp 129-141.
256. S. Mason and J. Parsley, A geometric and combinatorial view of weighted voting, Arxiv preprint arXiv:1109.1082, 2011.
257. # Tomasz Masopust, Complexity of Infimal Observable Superlanguages, Preprint 2016.
258. A Masoumi, M Antoniazzi, M Soutchanski, Modeling Organic Chemistry and Planning Organic Synthesis, Preprint 2015, http://www.cs.ryerson.ca/~mes/publications/MasoumiAntoniazziSoutchanskiModelOrganicChemistryPlanningOrganicSynthesis_GCAI2015.pdf
259. Dragan Mašulović, Big Ramsey spectra of countable chains, arXiv:1912.03022 [math.CO], 2019. (A000182, A000311)
260. Vlad Matei, A geometric perspective on Landau's problem over function fields, undated draft.
261. Math Forum at Drexel, 1, 2, 3, ..., 200,000 Integer Sequences
262. R. J. Mathar, doi:10.1023/B:NUMA.0000040063.91709.58 Numerical Representation of the Incomplete Gamma Function of Complex-Valued Argument, Num. Algorithms 36 (2004), pp 247-264.
263. R. J. Mathar, arXiv:physics/0512022 A Table of Third and Fourth Order Feynman Diagrams of the Interacting Fermion Green's Function
264. R. J. Mathar, Reduction formulas of the cosine of integer fractions of pi, PDF (2006 and updates)
265. Richard J. Mathar, doi:10.1002/qua.21334 Table of Feynman diagrams of the interacting Fermion Green's Function], Int. J. Quant. Chem., vol. 107, issue 10 (2007) 1975-1984.
266. Richard J. Mathar, arXiv:0803.0900 Series of reciprocal powers of k-almost primes
267. Richard J. Mathar, Finite Square Lattice Vertex Cover by a Baseline Set Defined With a Minimum Sublattice (2008) arXiv:0811.2434
268. Richard J. Mathar, Twenty Digits of Some Integrals of the Prime Zeta Function (2008) arXiv:0811.4739
269. Richard J. Mathar, Hardy-Littlewood Constants Embedded into Infinite Products over All Positive Integers, arXiv:0903.2514.
270. Richard J. Mathar, Corrigenda to "Interesting series involving the central binomial coefficient"..., arXiv:0905.0215 [math.CA], 2009
271. Richard J. Mathar, A Java Math.BigDecimal implementation of core mathematical functions, arXiv:0908.3030
272. Richard J. Mathar, Tile count in the Interior of Regular 2n-gons... arXiv:0911.3434 [math.CO]
273. Richard J. Mathar, Numerical evaluation of the oscillatory integral over exp(i*pi*x)x^(1/x) between 1 and infinity, arXiv:0912.3844 [math.CA]
274. Richard J. Mathar, Point counts of D_k and Some A_k and E_k Integer lattices..., arXiv:1002.3844 [math.GT]
275. Richard J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547
276. Richard J. Mathar, Cheyshev series representation of Feigenbaums' period-doubling function, arXiv:1008.4608
277. Richard J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038
278. Richard J. Mathar, Corrigendum to "on the divisibility of C(n-i-1,i-1) by i" .., arXiv:1109.0922
279. Richard J. Mathar, The Wigner 3n-j graphs up to 12 Vertices, arXiv:1109.2358
280. Richard J. Mathar, A table of Pisano Period Lengths
281. Richard J. Mathar, Yet another table of integrals, arXiv:1207.5845
282. Richard J. Mathar, Series expansion of generalized Fresnel integrals, arXiv:1211.3963
283. Richard J. Mathar, Tightly circumscribed regular polygons, arXiv:1301.6293
284. Richard J. Mathar, Gaussian quadrature of the integrals int_(-infty)^infty F(x) dx /cosh(x), vixra:1303.0038
285. Richard J. Mathar, Points on a line in the finite d-dimensional simple cubic lattice, 2013, http://oeis.org/A178294/a178294.pdf
286. Richard J. Mathar, Hierarchical Subdivision of the Simple Cubic Lattice, arXiv:1309.3705
287. Richard J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings arXiv:1311.6135
288. Richard J. Mathar, Plots of cycle graphs of the finite groups up to order 36, vixra:1406.0183
289. Richard J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788
290. Richard J. Mathar, ApSimon's mint problem with three or more weighings, arXiv:1407.3613
291. Richard J. Mathar, Four-center integral of a dipolar two-electron potential between s-type GTO's, arXiv:1410.1885
292. R. J. Mathar, Solutions to the exponential Diophantine 1 + p_1^x + p_2^y + p_3^z = w^2 for distinct primes p_1, p_2. p_3, 2014; PDF
293. Richard J. Mathar, Smallest Symmetric Supergroups of the Abstract Groups up to Order 37, vixra:1504.0032 (2015)
294. R. J. Mathar, A class of multinomial permutations avoiding object clusters, vixra:1511.0015 (2015)
295. R. J. Mathar, Counting 2-way monotonic terrace forms over rectangular landscapes, vixra:1511.0225 (2015)
296. R. J. Mathar, Topologically distinct sets of non-intersecting circles in the plane, arXiv:1603.00077 (2016)
297. R. J. Mathar, Some definite integrals over a power multiplied by four Modified Bessel Functions, vixra:1606.0141
298. R. J. Mathar, Tiling n x m Rectangles with 1 x 1 and s x s Squares arXiv:1609.03964 (2016)
299. R. J. Mathar, Tiling hexagons with smaller hexagons and unit triangles, vixra:1608.0380 (2016)
300. Richard J. Mathar, Construction of Bhaskara Pairs, arXiv:1703.01677
301. R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000
302. R. J. Mathar, Size of the set of residues of integer powers of fixed exponent, (2017) PDF (A000010, A000012, A000027, A000601, A002322, A002621, A046073, A087692, A087811, A092905, A250207, A293482, A293483, A293484, A293485, A288341, A288342, A288343, A288344, A288345)
303. Richard J. Mathar, The Kepler binary tree of reduced fractions, 2017. PDF (A000010, A000126, A178031, A178047, A294442, A294443, A295783)
304. R. J. Mathar, Labeled trees with fixed node label sum, vixra:1805.02054 (2018)
305. Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018. (A000055, A001349, A001429, A002094, A005703, A036250, A303841, A317722)
306. Richard J. Mathar, Feynman Diagrams of the QED Vacuum Polarization vixra:1901.0148 (2019)
307. Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019. (A000110, A000681, A005641, A006372, A008277, A008300, A170946, A219889, A257493, A306892, A307180, A307804)
308. R. J. Mathar, Corrigendum to "Polyomino enumeration results (Parkin et al, SIAM Fall Meeting 1967)", vixra:1905.0474 (2019)
309. Richard J. Mathar, Lozenge tilings of the equilateral triangle, arXiv:1909.06336 (2019)
310. Richard J. Mathar, Recurring Pairs of Consecutive Entries in the Number-of-Divisors Function, vixra:1911.0287 (2019)
311. Richard J. Mathar, Motzkin Islands: A 3-dimensional embedding of Motzkin Paths, vixra:2009.0152 (2020)
312. MathOverflow, Internal logic of the topos of simplicial sets. HTML
313. Yuri Matiyasevich, Exploring the performance of intransitivity indices in predicting coexistence in multispecies systems, Integers (2018) 18A, Article #A14. PDF (A000594)
314. Toshiki Matsusaka, Symmetrized poly-Bernoulli numbers and combinatorics, arXiv:2003.12378 [math.NT], 2020. (A136127)
315. Lutz Mattner, Irina Shevtsova, An optimal Berry-Esseen type theorem for integrals of smooth functions, arXiv:1710.08503 [math.PR], 2017. (A059750)
316. Andrey O. Matveev, Neighboring Fractions in Farey Subsequences (2008); arXiv:0801.1981
317. Andrey O. Matveev, arXiv:0801.4966 A Note on Boolean Lattices and Farey Sequences II
318. Andrey O. Matveev, Farey Sequences. Duality and Maps Between Subsequences. De Gruyter, 2017, ISBN 978-3-11-054766-5. - "There are numerous research papers and popular scientific notes, video lectures, slides of talks, and web pages (the best way to begin surfing the Web is to visit the On-Line Encyclopedia of Integer Sequences) that are concerned with Farey sequences and their applications."
319. Michael P. May, On the Existence and Frequency Distribution of the Shell Primes, arXiv preprint arXiv:1510.01028, 2015
320. R. Mayans, The future of mathematical text: A proposal for a new internet hypertext for Mathematics, J. Digital Information 5 (1) (2004) 234.
321. D. C. Mayer, Complex quadratic fields of type (3, 3, 3), 2014; PDF
322. Daniel C. Mayer, Periodic sequences of p-class tower groups (2015), arXiv:1504.00851
323. Daniel C. Mayer, Uniform triadic transformations as viewed from group theory, Preprint (on ResearchGate), 2015.
324. Daniel C. Mayer, Index-p abelianization data of p-class tower groups, arXiv preprint arXiv:1502.03388, 2015
325. D. Mayhew and G. F. Royle, arXiv:math/0702316 Matroids with nine elements], [math.CO]
326. A. Mazel, I. Stuhl, Y. Suhov, Hard-core configurations on a triangular lattice and Eisenstein primes, arXiv:1803.04041 [math.PR], 2018. (A003136, A232436, A118886)
327. V. Mazorchuk and B. Steinberg, Double Catalan monoids, Arxiv preprint arXiv:1105.5313, 2011.
328. M. I. Mazurkov, A. V. Sokolov, Nonlinear substitution S-boxes based on composite power residue codes, Radioelectronics and Communications Systems, Vol 56, No 9 (2013). doi:10.3103/S0735272713090045.
329. C. Mazza and D. Piau, Products of correlated symmetric matrices and q-Catalan numbers, Probab. Theory Related Fields 124 (2002), 574-594.
330. Taylor McAdam, Almost-primes in horospherical flows on the space of lattices, arXiv:1802.08764 [math.DS], 2018. Also in Journal of Modern Dynamics (2019) Vol. 15, 277-327. doi:10.3934/jmd.2019022 (A018804)
331. Peter McCalla, Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019. (A000045, A000108, A000957, A001003, A001006, A005043, A006318, A014445, A109906, A110320)
332. J. McCarron, Connected Quandles with Order Equal to Twice an Odd Prime, arXiv preprint arXiv:1210.2150, 2012
333. B. J. McCartin. e: the master of all. Math. Intell. 28 (2) (2006) 10-21 doi:10.1007/BF02987150
334. James McClung, Constructions and Applications of W-States, Bachelor Thesis, Worcester Polytechnic Institute (2020). PDF (A005803)
335. Gregory McColm, The building blocks of the integers, IUCr Newsletter, Vol. 26 (2018), No. 2; https://www.iucr.org/news/newsletter/etc/articles?issue=139792&result_138339_result_page=7
336. G. McConnell, Some non-standard ways to generate SIC-POVMs in dimensions 2 and 3, arXiv preprint arXiv:1402.7330, 2014
337. Judson S. McCranie, "A Study of Hyperperfect Numbers", J. Integer Sequences, Volume 3, 2000, Article 00.1.3.
338. Tim McDevitt and Kathryn Sutcliffe. A New Look at an Old Triangle Counting Problem. The Mathematics Teacher. Vol. 110, No. 6 (February 2017), pp. 470-474. doi:10.5951/mathteacher.110.6.0470
339. Colin McDiarmid, Connectivity for bridge-alterable graph classes, arXiv preprint arXiv:1311.3240, 2013.
340. John McGill, M. A. Ollis, On the asymptotic growth of bipartite graceful permutations, Discrete Mathematics (2019) Vol. 342, No. 3, 793-799. doi:10.1016/j.disc.2018.10.046
341. Clay McGowen, E Smith, S Navert, On Bachet's Equation, Poster, Boise State University, 2016; http://math.boisestate.edu/~marion/teaching/MATH305Spring2016/Poster/DeltaGSN.pdf
342. L. McHugh, CMJ Article Shows Collaboration Is Not Limited by Geography ... or Age, MAA Focus (Magazine), Vol. 31, No. 1, 2011, p. 13.
343. Brendan D. McKay, Frederique E. Oggier, N. J. A. Sloane, Gordon F. Royle, Ian M. Wanless and Herbert S. Wilf, arXiv:math.NT/0309389 Acyclic Digraphs and Eigenvalues of (0,1)-Matrices, Journal of Integer Sequences, 7 (2004), #04.3.3.
344. B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
345. B. D. McKay and I. M. Wanless, A census of small latin hypercubes, SIAM J. Discrete Math., 22 (2008) 719-736.
346. Douglas M. McKenna, Tendril Motifs for Space-Filling, Half-Domino Curves, in Bridges Conference Proceedings, 2016, 119-126; Abstract.
347. Douglas M. McKenna, On a Better Golden Rectangle (That Is Not 61.8033…% Useless!), Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, 187-194. Abstract (A003849)
348. Nathan McKenzie, Computing the Prime Counting Function with Linnik's Identity in ... Time and ... Space, and Related Combinatorial Number Theory Work, 2015; http://www.icecreambreakfast.com/primecount/primecounting.php
349. James McKeown, The Waldspurger Transform of Permutations and Alternating Sign Matrices, arXiv:1707.03937 [math.CO], 2017.
350. RI McLachlan, K Modin, H Munthe-Kaas, O Verdier, What are Butcher series, really? The story of rooted trees and numerical methods for evolution equations, arXiv preprint arXiv:1512.00906, 2015; Asia-Pacific Mathematics Newsletter, Dec 2017; http://www.asiapacific-mathnews.com/07/0701/0001_0011.pdf
351. Robert I. McLachlan, Ander Murua, The Lie algebra of classical mechanics, arXiv:1905.07554 [math-ph], 2019.
352. R. I. McLachlan and B. N. Ryland, The algebraic entropy of classical mechanics, J. Math. Phys. 44 (2003), no. 7, 3071-3087. doi:10.1063/1.1576904
353. K. Robin McLean, Latin square matrices and their inverses, The Mathematical Gazette (2019) Vol. 103, Issue 557, 265-276. doi:10.1017/mag.2019.58
354. Karyn McLellan, Periodic coefficients and random Fibonacci sequences, Electronic Journal of Combinatorics, 20(4), 2013, #P32.
355. Cam McLeman and Erin McNicholas, Graph Invertibility, Arxiv preprint arXiv:1108.3588, 2011
356. A. McLeod and W. O. J. Moser, Counting cyclic binary strings, Math. Mag., 80 (No. 1, 2007), 29-37.
357. Peter R. W. McNamara and Bruce E. Sagan, Infinite log-concavity: developments and conjectures (2008); arXiv:0808.1065; Advances in Applied Mathematics, In Press, Corrected Proof, Available online 17 April 2009.
358. J. P. McSorley, Counting structures in the Moebius ladder, Discrete Math., 184 (1998), 137-164.
359. John P.McSorley and Philip Feinsilver, A Model for Linear Recurrences and the m-Path Cover Polynomial of a Graph
360. John P. McSorley and Alan H. Schoen: On k-Ovals and (n, k, lambda)-Cyclic Difference Sets, and Related Topics, Discrete Math., 313 (2013), 129-154. The electronic version of this paper has the title Rhombic tilings of (n, k)-Ovals,(n, k, lambda)-cyclic difference sets, and related topics.
361. McSorley, John P., and John A. Trono. "On k-minimum and m-minimum edge-magic injections of graphs." Discrete Mathematics 310.1 (2010): 56-69.
362. Alex Meadows, B Putman, A New Twist on Wythoff's Game, arXiv preprint arXiv:1606.06819, 2016.
363. Karen Meagher, Peter Sin, All 2transitive groups have the EKR-module property, arXiv:1911.11252 [math.CO], 2019. (A003221)
364. L. A. Medina, V. H. Moll and E. S. Rowland, arXiv:0911.1325 Iterated primitives of logarithmic powers.
365. L. A. Medina and A. Straub, On multiple and infinite log-concavity, 2013; PDF arXiv:1405.1765
366. A D Mednykh, I A Mednykh, The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic, arXiv preprint arXiv:1711.00175, 2017. See Section 4.
367. Mednykh, Alexander; Nedela, Roman, Enumeration of unrooted maps of a given genus. J. Combin. Theory Ser. B 96 (2006), no. 5, 706-729.
368. Meehan, Sean; Tefera, Akalu; Weselcouch, Michael; Zeleke, Aklilu Proofs of Ruehr's identities. Integers 14 (2014), Paper No. A10, 6 pp.
369. K Meena, MA Gopalan, E Bhuvaneswari, On The Negative Pell Equation y^2=60x^2-15, Scholars Bulletin, Vol 1, Issue 11 (Dec, 2015):310-316.
370. K. Meena, M.A. Gopalan, A. Jesintha Mary, On the Negative Pell Equation y^2=7x^12-12, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 12, December (2016); www.ijeter.everscience.org
371. K. Meena, M.A. Gopalan, U.K. Rajalakshmi, Observations on the Hyperbola y2 = 87x2 - 6, International Journal of Recent Trends in Engineering & Research, Vol. 2, Issue 12. (2016)
372. K. Meena, M.A. Gopalan, T. Swetha. On The Negative Pell Equation y2 = 40x2 - 4. International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 5, Issue 1, January (2017).
373. N. Meenakshisundaram and Arul Lakshminarayan, The Fourier transform of the Hadamard transform: Multifractals, Sequences and Quantum Chaos (2005), arXiv:nlin/0510009.
374. Anne S. Meeussen, Erdal C. Oguz, Yair Shokef, Martin van Hecke, Topological defects produce exotic mechanics in complex metamaterials, arXiv:1903.07919 [cond-mat.soft], 2019. (A008793)
375. Laurent Méhats, Lutz Straßburger, Non-crossing Tree Realizations of Ordered Degree Sequences, Pages 211-227 in Logical Aspects of Computational Linguistics. Celebrating 20 Years of LACL (1996–2016), 9th International Conference, LACL 2016, Nancy, France, December 5-7, 2016, Proceedings, Lecture Notes in Computer Science book series (LNCS, volume 10054).
376. Zhousheng Mei, Suijie Wang, Pattern Avoidance of Generalized Permutations, arXiv:1804.06265 [math.CO], 2018. (A001006, A005043, A059346)
377. Antonios Meimaris, On the additive persistence of a number in base b
378. Pascal Meißner, Passive Scene Recognition, Indoor Scene Recognition by 3-D Object Search, Springer Tracts in Advanced Robotics, Springer, Cham (2020) Vol 135. doi:10.1007/978-3-030-31852-9_3 (A001187)
379. Stephen Melczer, Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice Path Enumeration, Dissertation, University of Waterloo, 2017.
380. Melczer, Stephen; Mishna, Marni Singularity analysis via the iterated kernel method. Combin. Probab. Comput. 23 (2014), no. 5, 861-888.
381. Melfi, Giuseppe, On simultaneous binary expansions of n and n^2. J. Number Theory 111 (2005), no. 2, 248-256.
382. G. Melfi, Su alcune successioni di interi
383. G. Melfi, On the conditional infiniteness of primitive weird numbers, Journal of Number Theory, Volume 147, February 2015, Pages 508-514.
384. Anton Mellit, Rationality proofs by curve counting, arXiv:1705.02931 [math.AG], 2017. ["We discovered this fact with the help of OEIS", p. 20].
385. V. Melnykov, I. Melnykov, S. Michael, Semi-supervised model-based clustering with positive and negative constraints, Advances in Data Analysis and Classification, 2015; doi:10.1007/s11634-015-0200-3
386. Paul Melotti, Sanjay Ramassamy, Paul Thévenin, Points and lines configurations for perpendicular bisectors of convex cyclic polygons, arXiv:2003.11006 [math.CO], 2020. (A003239, A005648)
387. E. Mendelson, Races with ties, Math. Mag. 55 (1982), 170-175.
388. F. V. Mendes, R. V. Ramos, Quantum Sequence States, arXiv:1408.4838 [quant-ph]
389. Miguel A. Mendez, Combinatorial differential operators in: Fa\a di Bruno formula, enumeration of ballot paths, enriched rooted trees and increasing rooted trees, arXiv preprint arXiv:1610.03602, 2016
390. Miguel Méndez, Rafael Sánchez, On the combinatorics of Riordan arrays and Sheffer polynomials: monoids, operads and monops, arXiv:1707.00336 [math.CO], 2017. (A000364, A119467, A119879)
391. Miguel Méndez, Rafael Sánchez Lamoneda, Monops, Monoids and Operads: The Combinatorics of Sheffer Polynomials, The Electronic Journal of Combinatorics (2018) 25.3, 3-25. HTML Abstract (A000364, A119467, A119879)
392. Yosu Yurramendi Mendizabal, Matematika esperimentalaren adibide bat: Lauki sareko patroi bitarren kopuruaren kalkulua, Ekaia 26 (2013), pp. 325-348.
393. J. R. G. Mendonça, On the uniform generation of random derangements, arXiv:1809.04571 [stat.CO], 2018. (A000166)
394. F. Menous, J.-C. Novelli, J.-Y. Thibon, Combinatorics of Poincare's and Schroeder's equations, arXiv preprint arXiv:1506.08107, 2015
395. Laszlo Mérai, A Winterhof, On the Nth linear complexity of automatic sequences, arXiv preprint arXiv:1711.10764, 2017
396. M. Merca, Fast Algorithm for Generating Ascending Compositions, Journal of Mathematical Modelling and Algorithms 11 (1) (2012) 89-104; doi:10.1007/s10852-011-9168-y
397. Merca, Mircea Inequalities and identities involving sums of integer functions. J. Integer Seq. 14 (2011), no. 9, Article 11.9.1, 25 pp.
398. M. Merca, A Note on Cosine Power Sums, Journal of Integer Sequences, Vol. 15 (2012), #12.5.3.
399. M. Merca, A Special Case of the Generalized Girard-Waring Formula, Journal of Integer Sequences, Vol. 15 (2012), #12.5.7.
400. Mircea Merca, A generalization of the symmetry between complete and elementary symmetric functions, Indian Journal of Pure and Applied Mathematics, 45 (2014), 75-89.
401. M. Merca, A generalization of Euler's pentagonal number recurrence for the partition function, The Ramanujan Journal, June 17, 2014.
402. M. Merca, Some experiments with complete and elementary symmetric functions, - Periodica Mathematica Hungarica, 69 (2014), 182-189.
403. M. Merca, A new look on the generating function for the number of divisors, Journal of Number Theory, Volume 149, April 2015, Pages 57-69.
404. M. Merca, The bisectional pentagonal number theorem, Journal of Number Theory, Volume 157, December 2015, Pages 223–232
405. Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60–75
406. Mircea Merca, Augmented monomials in terms of power sums, SpringerPlus (2015) 4:724l doi:10.1186/s40064-015-1506-5.
407. Mircea Merca, The Lambert series factorization theorem, The Ramanujan Journal, January 2017; doi:10.1007/s11139-016-9856-3; https://www.researchgate.net/publication/312324402_The_Lambert_series_factorization_theorem
408. Mircea Merca, A new look on the truncated pentagonal number theorem, CARPATHIAN J. MATH. 32 (2016), No. 1, 97 - 101
409. Mircea Merca, The Lambert series factorization theorem, Ramanujan Journal (January 2017). doi:10.1007/s11139-016-9856-3. Downloadable from: https://www.researchgate.net/publication/312324402
410. Mircea Merca, New relations for the number of partitions with distinct even parts, Journal of Number Theory 176 (July 2017), 1–12. doi:10.1016/j.jnt.2016.12.015
411. Mircea Merca, From a Rogers's identity to overpartitions, Periodica Mathematica Hungarica, 2016, doi:10.1007/s10998-016-0180-x
412. Mircea Merca, On the number of partitions into odd parts or congruent to +/-2 mod 10, Contributions to Discrete Mathematics, Vol 13, No 1 (2018). HTML (A133153)
413. Mircea Merca, Higher-order differences and higher-order partial sums of Euler's partition function. 2018. PDF (A078616)
414. Mircea Merca, Bernoulli numbers and symmetric functions, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RACSAM 2020) Vol. 114, Article 20. doi:10.1007/s13398-019-00774-6
415. Mircea Merca, Rank partition functions and truncated theta identities, arXiv:2006.07705 [math.CO], 2020. (A064173, A064174)
416. Mircea Merca and Maxie D. Schmidt, Generating Special Arithmetic Functions by Lambert Series Factorizations, arXiv:1706.00393 [math.NT], 2017.
417. M. Merca and M. D. Schmidt, Factorization theorems for generalized Lambert Series and applications, arXiv:1712.00611, (2017)
418. Mircea Merca, Maxie D. Schmidt, The partition function p(n) in terms of the classical Möbius function, The Ramanujan Journal 49 (1) (2019), 87-96 doi:10.1007/s11139-017-9988-0
419. Mircea Merca, Maxie D. Schmidt, Generating Special Arithmetic Functions by Lambert Series Factorizations, arXiv:1706.00393 [math.NT], 2017. Also in Contributions to Discrete Mathematics (2019) Vol. 14, No. 1, 31-45. doi:10.11575/cdm.v14i1.62425 (A000837, A133732)
420. H. Mercier, Réconciliation et complexité de la communication des données corrélées, M.Sc. Thesis, Université de Montréal, 2003.
421. J. K. Merikoski, R. Kumar and R. A. Rajput, Upper bounds for the largest eigenvalue of a bipartite graph, Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 26, pp. 168-176, April 2013; PDF
422. Markus Meringer, H. James Cleaves, Stephen J. Freeland, Beyond Terrestrial Biology: Charting the Chemical Universe of α-Amino Acid Structures, Journal of Chemical Information and Modeling, 53.11 (2013), pp. 2851-2862. doi:10.1021/ci400209n (A006820)
423. Merino, Criel; Noble, Steven D.; Ramírez-Ibáñez, Marcelino; Villarroel-Flores, Rafael. On the structure of the h-vector of a paving matroid. Eur. J. Comb. 33, No. 8, 1787-1799 (2012) doi:10.1016/j.ejc.2012.04.002
424. B. E. Merkel, Probabilities of Consecutive Events in Coin Flipping, Master's Thesis, Univ. Cincinatti, May 11 2011; PDF
425. Donatella Merlini, Proper generating trees and their internal path length, Discrete Applied Mathematics, Volume 156, Issue 5, 1 March 2008, Pages 627-646.
426. Donatella Merlini, Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3. Abstract (A000225, A001477, A001700, A001792, A008619, A025566, A027306, A052551, A064189, A079284, A225034, A261058)
427. Donatella Merlini, Massimo Nocentini, Functions and Jordan canonical forms of Riordan matrices, Linear Algebra and its Applications (2019) Volume 565, 177-207. doi:10.1016/j.laa.2018.12.011
428. Donatella Merlini and Renzo Sprugnoli, "Playing with Some Identities of Andrews", J. Integer Sequences, Volume 10, 2007, Article 07.9.5.
429. D. Merlini, R. Sprugnoli, doi:10.1016/j.tcs.2009.09.021 The relevant prefixes of coloured Motzkin walks: an average case analysis], Theor. Comp. Sci. 411 (1) (2010) 148-16.
430. Merlini, Donatella, and Renzo Sprugnoli. "Arithmetic into geometric progressions through Riordan arrays." Discrete Mathematics 340.2 (2017): 160-174.
431. Michael H. Mertens, Ken Ono, Larry Rolen, Mock modular Eisenstein series with Nebentypus, arXiv:1906.07410 [math.NT], 2019. (A204217) see the proof of Joerg Arndt in the comments on the OEIS sequence A204217
432. S. Mertens, Small random instances of the stable roommates problem, arXiv preprint arXiv:1502.06635, 2015.
433. Meshkov, V. R.; Omelchenko, A. V.; Petrov, M. I.; and Tropp, E. A.; Dyck and Motzkin triangles with multiplicities. Mosc. Math. J. 10 (2010), no. 3, 611-628.
434. Sihem Mesnager, Hyper-Bent Functions: Primary Constructions with Multiple Trace Terms, in Bent Functions. Springer, 2016, doi:10.1007/978-3-319-32595-8_10
435. Sihem Mesnager and Jean-Pierre Flori, A note on hyper-bent functions via Dillon-like exponents,
436. S. Mesnager and J.-P. Flori, doi:10.1109/TIT.2013.2238580 Hyper-bent functions via Dillon-like exponents, in Proc. Internat. Sympos. on Information Theory, (ISIT, 2012), IEEE, 2012, pp. 836-840.
437. Mesnager, Sihem; Flori, Jean-Pierre Hyperbent functions via Dillon-like exponents. IEEE Trans. Inform. Theory 59 (2013), no. 5, 3215-3232.
438. M Mestechkin, On two Fermat's discoveries, Journal of Computational Methods in Sciences and Engineering, vol. 16, no. 3, pp. 703-710, 2016.
439. Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4. HTML (A000027 A000079 A000124 A000125 A000127 A000217 A000292 A000384 A000389 A000580 A000582 A001288 A001519 A002492 A002662 A002664 A005408 A005843 A006261 A008859 A008860 A010966 A010968 A014105 A025581 A035039 A035041 A053126 A053127 A053128 A053129 A059993 A060163 A088305 A114284 A116722 A130883 A145018 A152948 A152950 A165747 A167499 A177787 A201347 A220074)
440. Ângela Mestre, José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5. HTML (A000012, A000027, A000045, A000096, A000108, A001478, A005586, A007318, A014137, A014138, A090826, A110555, A115140)
441. R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), Arxiv preprint arXiv:1111.3057, 2011
442. R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, Arxiv preprint arXiv:1202.3670, 2012
443. R. Mestrovic, A congruence modulo n^3 involving two consecutive sums of powers and its applications, arXiv preprint arXiv:1211.4570, 2012
444. R. Mestrovic, A search for primes p such that Euler number E_{p-3} is divisible by p, arXiv preprint arXiv:1212.3602, 2012
445. R. Mestrovic, Generalizations of Carmichael numbers I, arXiv preprint arXiv:1305.1867, 2013
446. Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv preprint arXiv:1312.7037, 2013
447. R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
448. R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820, 2014
449. Romeo Mestrovic, Different classes of binary necklaces and a combinatorial method for their enumeration, Preprint, 2016
450. Romeo Mestrovic, The Kurepa-Vandermonde matrices arising from Kurepa's left factorial hypothesis, Filomat 29:10 (2015), 2207–2215; doi:10.2298/FIL1510207M
451. Romeo Meštrović, Different classes of binary necklaces and a combinatorial method for their enumerations, arXiv:1804.00992 [math.CO], 2018. (A001031, A001037, A051168, A185158)
452. Romeo Meštrović, Curious conjectures on the distribution of primes among the sums of the first 2n primes, arXiv:1804.04198 [math.NT], 2018. (A007504, A013916, A013917, A013918, A022094, A024011, A024447, A033997, A038346, A038347, A045345, A051838, A054972, A060620, A061568, A065595, A066039, A067110, A067111, A071089, A072476, A076570, A076873, A077022, A077023, A077354, A083186, A110996, A110997, A112997, A114216, A116536, A117842, A118219, A121756, A123119, A131740, A143121, A143215, A156778, A161436, A161490, A165906, A166448, A167214, A189072, A196527, A196528)
453. Romeo Meštrović, On the distribution of primes in the alternating sums of concecutive primes [sic]. arXiv:1805.11657 [math.NT], 2018. (A005384, A008347, A131196, A131197, A131694, A136288, A163057, A163058, A226743, A226913, A233809, A240860, A242188, A264834)
454. Romeo Meštrović, Several generalizations and variations of Chu-Vandermonde identity, arXiv:1807.10604 [math.CO], 2018. (A088164)
455. Romeo Meštrović, Goldbach-type conjectures arising from some arithmetic progressions, University of Montenegro, 2018. Abstract (A000043, A000215, A000668, A019434)
456. Romeo Meštrović, On Kurepa's determinants arising from Kurepa's left factorial hypothesis, 13th Serbian Mathematical Congress (2014), Vrnjačka Banja, Serbia. Abstract (A236401)
457. Romeo Meštrović, Goldbach's like conjectures arising from arithmetic progressions whose first two terms are primes, arXiv:1901.07882 [math.NT], 2019. (A000043, A000215, A000668, A019434)
458. Romeo Meštrović, Sloane's sequences that cited my articles, University of Montenegro (2019). Abstract
459. Karola Mészáros, Alejandro H. Morales, Volumes and Ehrhart polynomials of flow polytopes, arXiv:1710.00701 [math.CO], 2017
460. K. Mészáros, A. H. Morales, B. Rhoades, The polytope of Tesler matrices, arXiv preprint arXiv:1409.8566, 2014
461. K Mészáros, AH Morales, J Striker, On flow polytopes, order polytopes, and certain faces of the alternating sign matrix polytope, arXiv preprint arXiv:1510.03357, 2015
462. James Metz, L Hemlow, A Schuloff, Happy Families, Continued, The Mathematics Teacher Vol. 110, No. 4, Teaching Math Online (November 2016), pp. 314-317; doi:10.5951/mathteacher.110.4.0314
463. J. Metzger, T. Richards, A Prisoner Problem Variation, Journal of Integer Sequences, 18 (2015), #15.2.7.
464. Rensley Meulens, The Proof of the Riemann Hypothesis and an Application to Physics, Scientific Research (2019) Vol. 10, No. 11, 967-988. doi:10.4236/am.2019.1011068 (A053117, A113025)
465. Istvan Mezo, On powers of Stirling matrices (2008) arXiv:0812.4047
466. István Mezö, Several Generating Functions for Second-Order Recurrence Sequences, J. Int. Seq. 12 (2009) 09.3.7
467. Mezo, István The r-Bell numbers. J. Integer Seq. 14 (2011), no. 1, Article 11.1.1, 14 pp.
468. I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637, 2013
469. Istvan Mezo, The Dual of Spivey's Bell Number Formula, Journal of Integer Sequences, Vol. 15 (2012), #12.2.4.
470. I. Mezo, A. Baricz, On the generalization of the Lambert W function with applications in theoretical physics, arXiv preprint arXiv:1408.3999, 2014.
471. István Mező, José L. Ramírez, The r-alternating permutations, Aequationes mathematicae (2019) 1-21. doi:10.1007/s00010-019-00658-5
472. István Mező, José L. Ramírez, A combinatorial approach to derangement matrix of type B, Linear Algebra and its Applications (2019) Vol. 582, 156-180. doi:10.1016/j.laa.2019.08.003
473. Emilia Mezzetti, RM Miró-Roig, Togliatti systems and Galois coverings, arXiv preprint arXiv:1611.05620, 2016
474. Pedro J. Miana, Hideyuki Ohtsuka, Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016.
475. Pedro J. Miana, Natalia Romero, Moments of Catalan Triangle Numbers, Number Theory and Its Applications (2020). doi:10.5772/intechopen.92046 (A112029, A183069)
476. B. K. Miceli, J, Remmel, Minimal Overlapping Embeddings and Exact Matches in Words, PU. M. A., Vol. 23 (2012), No. 3, pp. 291-315.
477. Isaac B. Michael, MR Sepanski, Net regular signed trees, AUSTRALASIAN JOURNAL OF COMBINATORICS, Volume 66(2) (2016), Pages 192–204.
478. Simon Michalowsky, Bahman Gharesifard, Christian Ebenbauer, A Lie bracket approximation approach to distributed optimization over directed graphs, arXiv:1711.05486 [math.OC], 2017. (A000048, A006788)
479. Martin A. Michels and Ulrich Knauer, The congruence classes of paths and cycles, Discrete Mathematics, 309 (2009), 5352-5359.
480. J. F. Michon, P. Ravache, On different families of invariant irreducible polynomials over F_2, Finite Fields Appl. 16 (3) (2010) 163-174 doi:10.1016/j.ffa.2010.01.004
481. Jean-Francis Michon, Pierre Valarcher and Jean-Baptiste Yunès, "Mahler's Expansion and Boolean Functions", J. Integer Sequences, Volume 10, 2007, Article 07.3.4.
482. Ioannis Michos, Christina Savvidou, Enumeration of super-strong Wilf equivalence classes of permutations, arXiv:1803.08818 [math.CO], 2018. (A077607).
483. Radu-Ioan Mihai, A geometric approach to Fibonacci and Lucas sequences, Parabola (2020) Vol. 56, Issue 1. Abstract (A000032, A000045)
484. Z. Mijajlovic, A. Pejovic, Computing finite models using free Boolean generators, arXiv preprint arXiv:1310.6978, 2013.
485. Jovan Mikić, A Method For Examining Divisibility Properties Of Some Binomial Sums, J. Int. Seq., Vol. 21 (2018), Article 18.8.7. HTML (A006480)
486. Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
487. Janusz Milek, Quantum Implementation of Risk Analysis-relevant Copulas, arXiv:2002.07389 [stat.ME], 2020. (A000110, A004211)
488. Milicevic, A., and N. Trinajstic. "Combinatorial enumeration in chemistry." Chapter 8 in Chemical Modelling: Application and Theory, Vol. 4 (2006): 405-469.
489. R. MILES, SYNCHRONIZATION POINTS AND ASSOCIATED DYNAMICAL INVARIANTS, PDF, Trans. Am. Math. Soc. 2013 doi:10.1090/S0002-9947-2013-05829-1
490. Jessica Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedonon transform, J. Combin. Theory, 17A 44-54 1996.
491. Alice Miller and Michael Codish, Graphs with girth at least 5 with orders between 20 and 32, arXiv:1708.06576 [math.CO], 2017.
492. A. M. Miller and D. L. Farnsworth, Counting the Number of Squares Reachable in k Knight's Moves, Open Journal of Discrete Mathematics, 2013, 3, 151-154, doi:10.4236/ojdm.2013.33027 Published Online July 2013
493. Miller, John E. (2014). “Langford's Problem, Remixed”.
494. Miller, John E. (2017). “Langford's Problem”.
495. M. Miller, J. Gimbert, F. Ruskey and J. Ryan, Iterations of eccentric digraphs, Bulletin of the Institute of Combinatorics and its Applications, 45 (2005) 41-50.
496. M. Miller, H. Perez-Roses and J. Ryan, The Maximum Degree-and-Diameter-Bounded Subgraph in the Mesh, Arxiv preprint arXiv:1203.4069, 2012 and Discr. Appl. Math 160 (12) (2012) 1782 doi:10.1016/j.dam.2012.03.035
497. Robert L. Miller, Necklaces, symmetries and self-reciprocal polynomials, Discrete Mathematics, Volume 22, Issue 1, 1978, Pages 25-33.
498. Steven J. Miller, Lower order terms in the 1-level density for families of holomorphic cuspidal newforms (2007), arXiv:0704.0924.
499. Steven J. Miller, An identity for sums of polylogarithm functions (2008); arXiv:0804.3611
500. S. J. Miller, An identity for sums of polylogarithm functions, INTEGERS: Electr. J. Comb. Number Theory 8 (2008) # A15
501. Steven J. Miller, Carsten Peterson, A geometric perspective on the MSTD question, arXiv:1709.00606 [math.CO], 2017.
502. Victor S. Miller, Counting Matrices that are Squares, arXiv preprint arXiv:1606.09299, 2016
503. P. W. Mills, RP Rundle, VM Dwyer, T Tilma, SJ Devitt, A proposal for an efficient quantum algorithm solving the graph isomorphism problem, - arXiv preprint arXiv 1711.09842, 2017
504. S. C. Milne, arXiv:math.NT/0009130 Hankel determinants of Eisenstein series, Developments in Mathematics vol. 4, Kluwer Academic Pub., Dordrecht, 2001, pp. 171--188.
505. Shin-ichi Minato, The power of enumeration - BDD/ZDD-based algorithms for tackling combinatorial explosion, Chapter 3 of Applications of Zero-Suppressed Decision Diagrams, ed. T. Satsoa and J. t. Butler, Morgan & Claypool Publishers, 2014
506. S. Minato, IEICE TRANSactions on Information and Systems, Vol. E96-D, No. 7, pp. 1419-1429;
507. Shin-ichi Minato, Counting by ZDD, Encyclopedia of Algorithms, 2014, pp. 1-6.
508. Shin-ichi Minato, Power of Enumeration - Recent Topics on BDD/ZDD-Based Techniques for Discrete Structure Manipulation, IEICE Transactions on Information and Systems, Volume E100.D (2017), Issue 8, p. 1556-1562. doi:10.1587/transinf.2016LOI0002
509. R. Miner, The importance of MathML to mathematics communication, Notices AMS 52 (5) (2005) 532
510. R. Miner and P. Topping, Math on the Web: A Status Report, Design Science, January 2001.
511. Sam Miner, Enumeration of several two-by-four classes, arXiv preprint arXiv:1610.01908, 2016
512. Sam Miner and I. Pak, The shape of random pattern avoiding permutations, PDF, 2013.
513. Chris Mingard, Joar Skalse, Guillermo Valle-Pérez, David Martínez-Rubio, Vladimir Mikulik, Ard A. Louis, Neural networks are a priori biased towards Boolean functions with low entropy, arXiv:1909.11522 [cs.LG], 2019. (A000609)
514. Angelo B. Mingarelli, arXiv:0705.4299 Abstract factorials of arbitrary sets of integers, 29 May 2007. [The author wrote to me on May 31 2007 saying "This paper would have been an impossibility were it not for your database on integer sequences. It gave me many ideas, many of which flourished into theorems." - N. J. A. Sloane 20:56, 19 April 2019 (EDT)]
515. G. T. Minton, Linear recurrence sequences satisfying congruence conditions, Proceedings of the American Mathematical Society, 142 (2014), 2337-2352.
516. A. Mir, F. Rossello and L. Rotger, A new balance index for phylogenetic trees, Arxiv preprint arXiv:1202.1223, 2012
517. Arnau Mir, Francesc Rossello, Lucia Rotger, Sound Colless-like balance indices for multifurcating trees. arXiv:1805.01329 [q-bio.PE]. (A000311, A000669, A074206)
518. Mishima, Miwako, and Koji Momihara. "A new series of optimal tight conflict-avoiding codes of weight 3." Discrete Mathematics 340.4 (2017): 617-629.
519. Marni Julie Mishna, A Holonomic Systems Approach to Algebraic Combinatorics, Ph. D. Dissertation, Univ. Québec à Montrèal, Nov. 2003.
520. Marni Mishna, "Automatic Enumeration of Regular Objects", J. Integer Sequences, Volume 10, 2007, Article 07.5.5.
521. Marni Mishna, Analytic Combinatorics: A Multidimensional Approach, Discrete Mathematics and Its Applications, CRC Press (2020), ISBN 978-1-138-48976-9. (A000079 (p. 8), A001006 (8), A001850 (63), A002894 (63), A005717 (62), A094423 (113), A135404 (33)) An established tool for discovering bijections is the Online Encyclopedia of Integer Sequences (OEIS). This is a phenomenal database of sequences where the entrees are refereed, and there are many references to follow. The OEIS is located at http://www.oeis.org.
522. Marni Mishna and Lily Yen, Set partitions with no k-nesting, Arxiv preprint arXiv:1106.5036, 2011
523. Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757, 2015
524. Kerry Mitchell, Spirolateral-Type Images from Integer Sequences, 2013; http://kerrymitchellart.com/articles/Spirolateral-Type_Images_from_Integer_Sequences.pdf
525. Kiana Mittelstaedt, A Stochastic Approach to Eulerian Numbers, arXiv:1902.03195 [math.CO], 2019. Also Amer. Math. Mnthly, 127:7 (2020), 618-628.
526. S. Miyake, J. Muramatsu, Index coding over correlated sources, in Network Coding (NetCod), 2015 International Symposium on; 22-24 June 2015; Pages 36 - 40; INSPEC Accession Number: 15363184 doi:10.1109/NETCOD.2015.7176785 Publisher: IEEE
527. Sebastian Mizera, Inverse of the String Theory KLT Kernel, arXiv:1610.04230 [hep-th]
528. W. Mlotkowski and K. A. Penson, The probability measure corresponding to 2-plane trees, arXiv preprint arXiv:1304.6544, 2013
529. W. Mlotkowski and K. A. Penson, Probability distributions with binomial moments, arXiv preprint arXiv:1309.0595, 2013
530. WOJCIECH MLOTKOWSKI AND KAROL A. PENSON, A FUSS-TYPE FAMILY OF POSITIVE DEFINITE SEQUENCES, arXiv:1507.07312, 2015, and Colloq. Math. 151 (2018) 289-304 doi:10.4064/cm6894-2-2017
531. W. Mlotkowski, K. A. Penson and K. Zyczkowski, Densities of the Raney distributions, arXiv preprint arXiv:1211.7259, 2012 and Doc. Math. 18 (2013) 1573-1596
532. W. Mlotkowski, A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408; PDF arXiv:1508.00138
533. S. Mneimneh, Fibonacci in The Curriculum: Not Just a Bad Recurrence, in Proceeding SIGCSE '15 Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Pages 253-258.
534. Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019. PDF (A000975, A001595, A003095, A048573)
535. Vladimir Modraka, Slavomir Bednara, Topological Complexity Measures of Supply Chain Networks, in 3th Global Conference on Sustainable Manufacturing - Decoupling Growth from Resource Use, Procedia CIRP 40 (2016) 295 – 300
536. V. Modrak and D. Marton, A framework for generating and complexity assessment of assembly supply chains, in Nonlinear Science and Complexity (NSC), 2012 IEEE 4th International Conference on, Date of Conference: 6-11 Aug. 2012; doi:10.1109/NSC.2012.6304712.
537. V. Modrak, D. Marton, Development of Metrics and a Complexity Scale for the Topology of Assembly Supply Chains, Entropy 2013, 15, 4285-4299; doi:10.3390/e15104285
538. V. Modrak, D. Marton, Approaches to Defining and Measuring Assembly Supply Chain Complexity, Discontinuity and Complexity in Nonlinear Physical Systems, Vol. 6, 2014, pp. 192-213.
539. V. Modrak, D. Marton, Configuration complexity assessment of convergent supply chain systems, International Journal of General Systems, Volume 43, Issue 5, 2014.
540. M. M. Mogbonju, S. O. Makanjuola, A. O. Adeniji, Cardinality and idempotency of signed order-preserving transformation semigroups, Nigerian Journal of Mathematics and Applications (2016) Vol. 25, Paper 18, 241−245. PDF. (A000045)
541. M. M. Mogbonju, I. A. Ogunleke, O. A. Ojo, Graphical Representation Of Conjugacy Classes In The Order-Preserving Full Transformation Semigroup, International Journal of Scientific Research and Engineering Studies (IJSRES), Volume 1 Issue 5, November 2014; ISSN: 2349-8862.
542. M. M. Mogbonju, O. A. Ojo, I. A. Ogunleke, Graphical Representation of Conjugacy Classes in the Order–Preserving Partial One–One Transformation Semigroup, International Journal of Science and Research (IJSR), Volume 3 Issue 12, December 2014
543. Moghaddamfar, A. R.; Salehy, S. Navid; Salehy, S. Nima doi:10.2478/spma-2014-0005 Determinant representations of sequences: a survey. Spec. Matrices 2, No. 1, 46-60 (2014).
544. A. R. Moghaddamfar, S. Navid Salehy, S. Nima Salehy, A Matrix-Theoretic Perspective on Some Identities Involving Well-Known Sequences, Bulletin of the Malaysian Mathematical Sci. Soc., 2015, doi:10.1007/s40840-015-0216-z
545. A. R. Moghaddamfar, S. Rahbariyan, S. Navid Salehy, S. Nima Salehy, Some Infinite Matrices Whose Leading Principal Minors Are Well-known Sequences, arXiv:1705.04912 [math.NT], 2017.
546. A. Moghaddamfar, H. Tajbakhsh, More Determinant Representations for Sequences, Journal of Integer Sequences, 17 (2014), #14.5.6.
547. Nasrin Mohabbati-Kalejahi, Hossein Akbaripour, Ellips Masehian, Basic and Hybrid Imperialist Competitive Algorithms for Solving the Non-attacking and Non-dominating n -Queens Problems, Studies in Computational Intelligence Volume 577, 2015, pp 79-96. doi:10.1007/978-3-319-11271-8_6.
548. M. Mohammed, arXiv:math.CO/0202295 Counting Hexagonal Lattice Animals, submitted.
549. Bojan Mohar, Hermitian adjacency spectrum and switching equivalence of mixed graphs, preprint arXiv:1505.03373, 2015. (A050931)
551. V. H. Moll, An arithmetic conjecture on a sequence of arctangent sums, PDF, 2012.
552. V. H. Moll, Numbers and Functions: From a Classical-Experimental Mathematician's Point of View, Student Mathematical Library, Volume 65, Amer. Math. Soc., 2012.
553. Marius Möller, Laura Hindersin, Arne Traulsen, Exploring and mapping the universe of evolutionary graphs, arXiv:1810.12807 [q-bio.PE], 2018. (A001349)
554. Marius Möller, Laura Hindersin, Arne Traulsen, Exploring and mapping the universe of evolutionary graphs identifies structural properties affecting fixation probability and time, Communications Biology 2 (2019), Article number: 137. HTML (A001349)
555. J. M. Møller, Euler characteristics of equivariant subcategories, arXiv preprint arXiv:1502.01317, 2015.
556. David Molnar, Wiggly Games and Burnside's Lemma, Chapter 8, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 102. (A000108)
557. Michael Monagan, Baris Tuncer, Some results on counting roots of polynomials and the Sylvester resultant. Preprint, 2016: http://www.cecm.sfu.ca/~mmonagan/papers/FPSAC16.pdf See also 28th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University (Vancouver, Canada 2016) hal-02166349 [math.CO]. Abstract (A006579) 'We found this result by direct computation and using the Online Encylopedia of IntegerSequences (OEIS)'
558. John Monaghan, Tools and Mathematics in the Real World, a chapter in Tools and Mathematics, Vol. 110 of the Springer series Mathematics Education Library, pp. 333-356, 2016
559. Marco Mondelli, SH Hassani, R Urbanke, Construction of Polar Codes with Sublinear Complexity, arXiv preprint arXiv:1612.05295, 2016
560. Mikaël Monet, Dan Olteanu, Towards Deterministic Decomposable Circuits for Safe Queries, 2018. PDF (A003182)
561. P. Mongelli, Kazhdan-Lusztig polynomials of Boolean elements, Arxiv preprint arXiv:1111.2945, 2011
562. Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192; http://ami.ektf.hu/uploads/papers/finalpdf/AMI_41_from175to192.pdf
563. Mojtaba Moniri, Saman Moniri, Limit cycles and their period detection via numeric and symbolic hybrid computations, Communications in Nonlinear Science and Numerical Simulation (2020) Vol. 83, 105107. doi:10.1016/j.cnsns.2019.105107
564. Kenneth M. Monks, An Elementary Proof of the Explicit Formula for the Möbius Number of the Odd Partition Poset, J. Int. Seq., Vol. 21 (2018), Article 18.9.6. HTML (A000246)
565. Randall Monroe, XKCD comic, OEIS Submissions, xkcd.com/2016, July 6 2018
566. Paul Monsky, arXiv:1009.3985 Disquisitiones arithmeticae and online sequence A108345.
567. J. Monterde, The Bertrand curve associated to a Salkowski curve, Journal of Geometry (2020) Vol. 111, Article No. 21. doi:10.1007/s00022-020-00533-8
568. Guido F. Montufar and Jason Morton, When Does a Mixture of Products Contain a Product of Mixtures?, Arxiv preprint arXiv:1206.0387, 2012.
569. Dustin Moody, Mohammad Sadek, Arman Shamsi Zargar, Families of elliptic curves of rank ≥ 5 over Q(t), Rocky Mountain Journal of Mathematics (2019) Vol. 49, No. 7, 2253-2266. doi:10.1216/RMJ-2019-49-7-2253 (A031173)
570. J. W. Moon, Lattice paths in regions with the catalan property, Journal of Combinatorial Theory, Series A, Volume 28, Issue 1, January 1980, Pages 98-102.
571. Young-Sik Moon, Jong-Yoon Yoon, Jong-Seon No, Sang-Hyo Kim, Interference Alignment Schemes Using Latin Square for Kx3 MIMO X Channel, arXiv:1810.05400 [cs.IT], 2018. Also in IEEE Access (2018) Vol. 7, 4348-4357. doi:10.1109/ACCESS.2018.2888501 (A000315)
572. D. Moore, W. F. Smyth and D. Miller, Counting distinct strings, Algorithmica 23 -1 (1999) 1-13.
573. Caroline Moosmüller, Tomas Sauer, Polynomial overreproduction by Hermite subdivision operators, and p-Cauchy numbers, arXiv:1904.10835 [math.NA], 2019. (A002687, A002688)
574. M. Mor, A. S. Fraenkel, Cayley permutations, Discrete Mathematics, Volume 48, Issue 1, January 1984, Pages 101-112.
575. de la Mora, Carlos; Wojciechowski, Piotr J. Multiplicative bases in matrix algebras. Linear Algebra Appl. 419 (2006), no. 2-3, 287-298.
576. A Morales, I Pak, G Panova, Hook formulas for skew shapes I. q-analogues and bijections, arXiv preprint arXiv:1512.08348, 2015 [The OEIS was cited in the first version of this document, although not in version 3]
577. Alejandro H. Morales, I Pak, G Panova, Why is pi less than twice phi?, Amer. Math. Monthly, October 2018; http://math.ucla.edu/~ahmorales/papers/EulerFib4.pdf
578. Alejandro H. Morales, Igor Pak, Greta Panova, Hook formulas for skew shapes III. Multivariate and product formulas, arXiv:1707.00931 [math.CO], 2017.
579. Alejandro H. Morales, Igor Pak, Greta Panova, Asymptotics of principal evaluations of Schubert polynomials for layered permutations. arXiv:1805.04341 [math.CO], 2018. (A061061)
580. L. Morales, H. Sudborough, A quadratic lower bound for Topswops, Theor. Comp. Sci 411 (2010) 3965-3970 doi:10.1016/j.tcs.2010.08.011
581. Jack Morava, On the visual appearance of relativistic objects (2008); arXiv:0804.4160
582. P. Moree, arXiv:math.CO/0311205 Convoluted convolved Fibonacci numbers. J. Integer Sequences, Volume 7, 2004, Article 04.2.2.
583. Pieter Moree, Irregular behaviour of class numbers and Euler-Kronecker constants of cyclotomic fields: the log log log devil at play, arXiv:1711.07996 [math.NT], 2017. Also in Irregularities in the Distribution of Prime Numbers. Springer, Cham, 2018. 143-163. HTML (A135311)
584. Pieter Moree, Min Sha, Non near-primitive roots, arXiv:1901.02650 [math.NT], 2019. (A321217)
585. Pieter Moree, Min Sha, Primes in arithmetic progressions and nonprimitive roots, Bulletin of the Australian Mathematical Society (2019) 1-7. doi:10.1017/S0004972719000443
586. Pieter Moree, SS Eddin, Products of two proportional primes, arXiv preprint arXiv:1606.07727, 2016 ["On computing various examples of those using Mathematica and studying the j-th coefficient of a_k(r) as a sequence using the On-Line Encyclopedia of Integer Sequences (OEIS), we made an explicit conjecture for the coefficients of a_k(r) and eventually proved it by quite a different route."]
587. Nelma Moreira, Davide Nabais and Rogerio Reis, DesCo: a Web Based Information System for Descriptional Complexity Results, PDF.
588. Nelma Moreira and Rogério Reis, "On the Density of Languages Representing Finite Set Partitions", J. Integer Sequences, Volume 8, 2005, Article 05.2.8.
589. R. Moreno, L. M. Rivera, Blocks in Cycles and k-commuting Permutations, arXiv preprint arXiv:1306.5708, 2013
590. S. G. Moreno and E. M. Garcia, New Infinite Products of Cosines and Viete-Like Formulae, Mathematics Magazine, 86 (20130, 15-25.
591. Moreno, Samuel G.; Garcia-Caballero, Esther M. On Viate-like formulas. J. Approx. Theory 174 (2013), 90-112.
592. W. A. M. Morgado and S. M. D. Queirós, Thermostatistics of small nonlinear systems: Gaussian thermal bath, PHYSICAL REVIEW E 90, 022110 (2014).
593. Takehiko Mori, Manabu Hagiwara, A number theoretic formula and asymptotic optimality of cardinalities of BAD correcting codes, Discrete Mathematics (2020) Vol. 343, Issue 6, 111852. doi:10.1016/j.disc.2020.111852
594. S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987.
595. Sophie Morier-Genoud, Valentin Ovsienko, Farey boat II. Q-deformations: q-deformed rationals and q-continued fractions, arXiv:1812.00170 [math.CO], 2018. (A000129, A079487, A123245)
596. Sophie Morier-Genoud, Valentin Ovsienko, On q-deformed real numbers, arXiv:1908.04365 [math.QA], 2019. (A001203, A003417, A004148, A079487, A123245)
597. Sophie Morier-Genoud, Valentin Ovsienko, q-deformed rationals and q-continued fractions, (2019) [math]. PDF (A000129, A079487, A123245)
598. A. Morkotun, On the increase of Gronwall function value at the multiplication of its argument by a prime, arXiv preprint arXiv:1307.0083, 2013.
599. Flaviano Morone, Ian Leifer, Hernán A. Makse, Fibration symmetries uncover the building blocks of biological networks, Proceedings of the National Academy of Sciences (2020) Vol. 117, No. 15, 8306-8314. doi:10.1073/pnas.1914628117 (A003269)
600. Thomas Morrill, Look, Knave, arXiv:2004.06414 [math.CO], 2020. (A001387, A005150, A014715)
601. Kent E. Morrison, "Integer Sequences and Matrices Over Finite Fields", J. Integer Sequences, Volume 9, 2006, Article 06.2.1.
602. Philip Morrison, Review of A Handbook of Integer Sequences, Scientific American, April, 1974, pp. 125-126.
603. S. Morrison, E. Peters, N. Snyder, Categories generated by a trivalent vertex, arXiv preprint arXiv:1501.06869, 2015
604. G. L. Morrow, Laws relating runs and steps in gambler's ruin, Stochastic Processes and their Applications, 125 (2015) 2010–2025.
605. Sarwar Morshed, M Baratchi, PK Mandal, G Heijenk, A Multi-channel Multiple Access Scheme Using Frequency Offsets-Modelling and Analysis, Preprint, 2016; PDF
606. Eric T. Mortenson, A Kronecker-type identity and the representations of a number as a sum of three squares, arXiv:1702.01627 [math.NT], 2017. ("We would like to thank Neil Sloane’s On-line Encyclopedia of Integer Sequences for directing us to references [4, 7, 21, 28]".)
607. Cristinel Mortici, doi:10.1016/j.jnt.2010.06.012 Estimating the Somos' quadratic reccurrence constant, J. Number Theory 130 (2010) 2650-2657
608. Mikołaj Morzy, Tomasz Kajdanowicz, Przemysław Kazienko, On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy, Complexity, Volume 2017 (2017), Article ID 3250301. doi:10.1155/2017/3250301
609. Pablo Moscato, Business Network Analytics: From Graphs to Supernetworks, Business and Consumer Analytics: New Ideas, Springer, Cham, 307-400. doi:10.1007/978-3-030-06222-4_7
610. Mohsen Mosleh, K Dalili, B Heydari, Distributed or monolithic? a computational architecture decision framework, arXiv preprint arXiv:1608.00944, 2016
611. Peter J. C. Moses, Clark Kimberling, Nested interval sequences of positive real numbers, Integers 17 (2017), #A46. PDF (A269804)
612. Michael J. Mossinghoff, Tomás Oliveira e Silva, Tim Trudgian, The distribution of k-free numbers, arXiv:1912.04972 [math.NT], 2019. (A020754)
613. Michael J. Mossinghoff, Timothy S. Trudgian, A tale of two omegas, arXiv:1906.02847 [math.NT], 2019. (A059966)
614. A Motzek, R Möller, Exploiting Innocuousness in Bayesian Networks, Preprint 2015; https://www.ifis.uni-luebeck.de/uploads/tx_wapublications/ai-dbn-motzek-public-ga.pdf
615. T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Refers to the manuscript of the 1973 Handbook of Integer Sequences.]
616. Sanjay Moudgalya, Abhinav Prem, Rahul Nandkishore, Nicolas Regnault, B. Andrei Bernevig, Thermalization and its absence within Krylov subspaces of a constrained Hamiltonian, arXiv:1910.14048 [cond-mat.str-el], 2019. (A051924, A092443)
617. H Mousavi, MD Schmidt, Factorization Theorems for Relatively Prime Divisor Sums, GCD Sums and Generalized Ramanujan Sums, arXiv preprint arXiv:1810.08373, 2018
618. H Movasati, Y Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv preprint arXiv:1603.09411, 2016
619. Hossein Movasati, Younes Nikdelan, Product formulas for weight two newforms, arXiv:1803.01414 [math.NT], 2018. (A228072)
620. M. V. Movshev, A formula for the partition function of the beta-gamma system on the cone pure spinors, arXiv preprint arXiv:1602.04673, 2016
621. Moy, Richard, Congruences among power series coefficients of modular forms. Int. J. Number Theory 9 (2013), no. 6, 1447-1474.
622. Mr Robot, TV Series, Season 2, Episode 11, around minute 37, September 2016, one of the characters uses the OEIS to decrypt a secret message.
623. Dixy Msapato, Counting the number of τ-exceptional sequences over Nakayama algebras, arXiv:2002.12194 [math.RT], 2020. (A055541, A080599)
624. Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.1.6.
625. Dhruv Mubayi, Caroline Terry, An extremal graph problem with a transcendental solution, arXiv preprint arXiv:1607.07742, 2016
626. Muche, Tilahun A. "Loop Saturated Graphs and Index of Assembly Words." Global Journal of Pure and Applied Mathematics 11.1 (2015): 241-256.
627. Tilahun Muche, Mulatu Lemma, George Tessema and Agegnehu Atena, Perfect if and only if Triangular, Advances in Theoretical and Applied Mathematics, Volume 12, Number 1 (2017), pp. 39-50.
628. Henri Muehle, Philippe Nadeau, A Poset Structure on the Alternating Group Generated by 3-Cycles, arXiv:1803.00540 [math.CO], 2018. (A002293, A006013, A052750, A118970)
629. F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivré Formula, March 2014; Preprint on ResearchGate.
630. A Mugler, S Fancher, Stochastic modeling of gene expression, protein modification, and polymerization, arXiv preprint arXiv:1510.00675, 2015
631. Henri Mühle, Counting Proper Mergings of Chains and Antichains, Arxiv preprint arXiv:1206.3922, 2012
632. H. Mühle, Proper Mergings of Stars and Chains are Counted by Sums of Antidiagonals in Certain Convolution Arrays--The Details--, arXiv preprint arXiv:1301.1654, 2013. ("Inspired by this connection [with two sequences in the OEIS] we were able to prove the following theorem ...")
633. Henri Mühle, Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices, arXiv preprint arXiv:1509.06942, 2015
634. Henri Mühle, Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces. arXiv:1701.02109, 2017.
635. Henri Mühle, The core label order of a congruence-uniform lattice, Algebra universalis (2019) Vol. 80, No. 1, 10. doi:10.1007/s00012-019-0585-5
636. Hamzeh Mujahed, Benedek Nagy, Wiener Index on Lines of Unit Cells of the Body-Centered Cubic Grid, Mathematical Morphology and Its Applications to Signal and Image Processing, 12th International Symposium, ISMM 2015. (A007290, A001386) doi:10.1007/978-3-319-18720-4_50
637. Hamzeh Mujahed, Benedek Nagy, Exact Formula for Computing the Hyper-Wiener Index on Rows of Unit Cells of the Face-Centred Cubic Lattice>, Analele Universitatii Ovidius Constanţa-Seria Matematica Vol. 26(1), 2018, 169-187. doi:0.2478/auom-2018-0011 (A273322)
638. Pere Mujal, Enric Sarlé, Artur Polls, Bruno Juliá-Díaz, Quantum correlations and degeneracy of identical bosons in a 2D harmonic trap, arXiv:1707.04166 [cond-mat.quant-gas], 2017.
639. Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019. (A001003, A001700, A001764, A006605, A056010, A063020, A071725, A109081, A122368, A127632, A180874, A279569)
640. Colm Mulcahy, Mathematical Card Magic: Fifty-Two New Effects, 2013; CRC Press, 2013.
641. J. Mullahy, Marginal Effects in Multivariate Probit and Kindred Discrete and Count Outcome Models, University College Dublin, GEARY INSTITUTE, Geary WP2011/35 November 2011. PDF
642. Todd Mullen, On Variants of Diffusion, Ph. D. Thesis, Dalhousie University (Halifax, NS Canada, 2020). PDF (A000670, A001169, A052535, A218078)
643. Lyle E. Muller, Michelle Rudolph-Lilith, On a link between Dirichlet kernels and central multinomial coefficients, Discrete Mathematics, Volume 338, Issue 9, 6 September 2015, Pages 1567–1572, doi:10.1016/j.disc.2015.04.001. (A002426, A005191, A025012, A025014)
644. R. Müller and M. E. Nebel, Combinatorics of RNA secondary structures with base triples, http://wwwagak.cs.unikl.de/downloads/papers/Combinatorics_of_RNA_secondary_structures_with_base_triples.pdf, 2013.
645. Tom Müller, A negative answer to two questions about the smallest prime numbers having given digit sums, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 5, Paper A10, 2005.
646. Tom Müller, "Prime and Composite Terms in Sloane's Sequence A056542", J. Integer Sequences, Volume 8, 2005, Article 05.3.3.
647. Müller, Tom, Searching for large elite primes. Experiment. Math. 15 (2006), no. 2, 183-186.
648. Tom Müller, "On Anti-Elite Prime Numbers", J. Integer Sequences, Volume 10, 2007, Article 07.9.4.
649. Tom Müller, On generalized Elite Primes, JIS 11 (2008) 08.3.1
650. T. Müller, On the Fermat Periods of Natural Numbers, J. Int. Seq. 13 (2010) # 10.9.5
651. T. Müller, Ist die Folge der Primzahl-quersummen beschränkt? Elem. Math. 66 (2011) 146-154 doi:10.4171/EM/183
652. Tom Müller On the Exponents of Non-Trivial Divisors of Odd Numbers and a Generalization of Proth's Primality Theorem, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.7.
653. Augustine O. Munagi, Extended set partitions with successions, European Journal of Combinatorics, Volume 29, Issue 5, July 2008, Pages 1298-1308.
654. A. O. Munagi, Alternating subsets and permutations, Rocky Mountain J. Math. 40 (6) (2010) 1965-1977 doi:10.1216/RJM-2010-40-6-1965
655. Augustine O. Munagi, Euler-type identities for integer compositions via zig-zag graphs, INTEGERS, 12 (2012), #A60.
656. Augustine O. Munagi, Primary classes of compositions of numbers, Annales Mathematicae et Informaticae, 41 (2013) pp. 193-204; PDF.
657. A. O. Munagi, Set partitions with isolated singletons, Am. Math. Monthly 125 (2018), 447-452.
658. Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5. HTML (A000045, A000079, A000930, A003269, A003520, A005708, A005709, A005710, A005711, A017898, A017899, A017900, A017901, A017902, A017903, A017904, A027934, A055389, A145018, A233583)
659. Augustine O. Munagi, Combinatory Classes of Compositions with Higher Order Conjugation, Annals of Combinatorics (2019) Vol. 23, 917–934. doi:10.1007/s00026-019-00471-6
660. A. O. Munagi and J. A. Sellers, Refining overlined parts in overpartitions via residue classes: bijections, generating functions, and congruences, 2013; PDF
661. A. O. Munagi, J. A. Sellers, Some inplace identities for integer compositions, PDF, 2013.
662. A. O. Munagi, T. Shonhiwa, On the partitions of a number into arithmetic progressions JIS 11 (2008) 08.5.4
663. Munarini, Emanuele, Enumeration of order ideals of a garland. Ars Combin. 76 (2005), 185-192.
664. Munarini, Emanuele, Combinatorial properties of the antichains of a garland. Integers, 9 (2009), 353-374.
665. E. Munarini, Characteristic, admittance and matching polynomials of an antiregular graph, Appl. Anal. Discrete Math 3 (1) (2009) 157-176 doi:10.2298/AADM0901157M
666. E. Munarini, M. Poneti, S. Rmialdi, Matrix compositions, JIS 12 (2009) 09.4.8
667. Emanuele Munarini, "Shifting Property for Riordan, Sheffer and Connection Constants Matrices", Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2. PDF (A000045, A000073, A000078, A000085, A000108, A000110, A000255, A000262, A000932, A000984, A001591, A001592, A001764, A002720, A002793, A004319, A006629, A006630, A006631, A007318, A007405, A008277, A008287, A025174, A027907, A035343, A040027, A049425, A063260, A063265, A066178, A079262, A102594, A102893, A105287, A122189, A131689, A132393, A171890, A213651, A213652, A230547, A233657, A236194)
668. Emanuele Munarini, Combinatorial identities for Appell polynomials. Applicable Analysis and Discrete Mathematics, 2018. doi:10.2298/AADM161001004M (A000085, A000898, A005425)
669. Emanuele Munarini, A generalization of André-Jeannin's symmetric identity, Pure Mathematics and Applications (2018) Vol. 27, No. 1, 98–118. doi:10.1515/puma-2015-0028 (A000129, A001045, A026150, A063967)
670. Emanuele Munarini, Pell graphs, Discrete Mathematics (2019) Vol. 342, Issue 8, 2415-2428. doi:10.1016/j.disc.2019.05.008
671. Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517. doi:10.2298/AADM180226017M (A008275, A008277, A008297, A048854, A059297, A132393, A154372, A271703, A286724)
672. Emanuele Munarini, q-Derangement Identities, J. Int. Seq., Vol. 23 (2020), Article 20.3.8. HTML (A000110, A000166)
673. Munarini, Emanuele; Torri, Damiano, Cayley continuants. Theoret. Comput. Sci. 347 (2005), no. 1-2, 353-369.
674. Munarini, Emanuele; Zagaglia Salvi, Norma, Binary strings without zigzags. Sém. Lothar. Combin. 49 (2002/04), Art. B49h, 15 pp.
675. Héctor A. Múnera, On the existence of Fibonacci-like triangles, including Pythagorean triplets and quadruplets, Ch. 25, New Foundation in the Sciences: Physics without Sweeping Infinities under the Rug (2019), 464. PDF
676. H. Z. Munthe-Kaas and S. Krogstad, On enumeration problems in Lie-Butcher theory, Future Generation Computer Systems, Volume 19, Issue 7, October 2003, Pages 1197-1205.
677. H. Munthe-Kaas and A. Lundervold, On post-Lie algebras, Lie-Butcher series and moving frames, Arxiv preprint arXiv:1203.4738, 2012 and Found. Comput. Math. 13 (4) (2013) 583-613 doi:10.1007/s10208-013-9167-7
678. H. Z. Munthe-Kaas and W. M. Wright, On the Hopf Algebraic Structure of Lie Group Integrators (2006), arXiv:math/0603023; Foundations of Computational Mathematics, Volume 8, Number 2 / April, 2008.
679. G. Muntingh, Implicit Divided Differences, Little Schroder Numbers and Catalan Numbers, Arxiv preprint arXiv:1204.2709, 2012, J. Int. Seq. 15 (2012) #12.6.5
680. V. Murali, Combinatorics of counting finite fuzzy subsets, Fuzzy Sets and Systems, Volume 157, Issue 17, 1 September 2006, Pages 2403-2411.
681. Swathy Muralidharan, The Fifteen Puzzle—A New Approach, Mathematics Magazine, Vol. 90, No. 1 (February 2017), pp. 48-57. doi:10.4169/math.mag.90.1.48
682. S. V. Muravyov and E. Y. Emelyanova, Combinatorial characterization of inrankings as weak orders induced by intervals, J. Phys.: Conf. Ser. (2019) Vol. 1379 No. 1, 012052. doi:10.1088/1742-6596/1379/1/012052 (A000217)
683. Sergey V. Muravyov, Liudmila I. Khudonogova, Ekaterina Y. Emelyanova, Interval data fusion with preference aggregation], Measurement (2017), see page 5. doi:10.1016/j.measurement.2017.08.045
684. M. Muresan, doi:10.1007/978-0-387-78933-0, A concrete approach to classical analysis. CMS Books in Mathematics (2009)
685. Tom Murphy VII, Is this the longest Chess game?, 2020. PDF (A010060)
686. Fionn Murtagh, The Haar Wavelet Transform of a Dendrogram: Additional Notes (2007), arXiv:cs/0702067.
687. Fionn Murtagh, Symmetry in Data Mining and Analysis: A Unifying View based on Hierarchy (2008); arXiv:0805.2744
688. M. V. N. Murthy, Matthias Brack, Rajat K. Bhaduri, Johann Bartel, Semi-classical analysis of distinct square partitions, arXiv preprint arXiv:1808.05146 [cond-mat.stat-mech], Aug 14 2018. (A033461)
689. Samuel P. Muscinelli, Wulfram Gerstner & Johanni Brea, Exponentially long orbits in Hopfield neural networks, PDF doi:10.1162/NECO_a_00919, Neural Comp. 29 (2) (2017) 458-484
690. G. Musiker, Cluster algebras, Somos sequences and exchange graphs, thesis, 2002(a).
691. S. Mustonen, P. Haukkanen, J. Merikoski, Some polynomials associated with regular polygons, Acta Univ. Sapientiae, Mathematica, 6, 2 (2014) 178–193.
692. Pradeep Mutalik, Solution: ‘The Prime Rib Problem’, Quanta Magazine, Sep 08 2017, https://www.quantamagazine.org/solution-the-prime-rib-problem-20170908/, mentions A058989.
693. Henri Mühle, Ballot-Noncrossing Partitions, Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana), Séminaire Lotharingien de Combinatoire (2019) Vol. 82B, Article #7. PDF (A058127)
694. Seppo Mustonen, <a href="http://www.survo.fi/papers/PointsInGrid.pdf">On lines and their intersection points in a rectangular grid of points</a>; also <a href="/A018808/a018808.pdf">On lines and their intersection points in a rectangular grid of points</a> [Local copy]
695. T. Mütze, Proof of the middle levels conjecture, arXiv preprint arXiv:1404.4442, 2014
696. Torsten Mütze and Franziska Weber, Construction of 2-factors in the middle layer of the discrete cube, Arxiv preprint arXiv:1111.2413, 2011
697. Arnauld Mesinga Mwafise, Riordan Arrays, Elliptic Functions and their Applications, Dissertation, Department of Computing and Mathematics, Waterford Institute of Technology, June 2017.
698. A. N. Myers, Counting permutations by their rigid patterns, J. Combin. Theory, A 99 (2002), 345-357.
699. Kellen Myers, Joseph Parrish, Some nonlinear Rado numbers, Integers (2018) 18B, Article #A6. Abstract (A250026)
700. Scott Myers, Sahar Hojjat, Rebecca Miller, Stephen Bruer, Marcus Ferrone, Development of a student-driven information technology support service, Currents in Pharmacy Teaching and Learning (2018). doi:10.1016/j.cptl.2018.07.008
701. T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
702. Gerry Myerson, Trifectas in Geometric Progression, Australian Mathematical Society Gazette, 35 (3) (2008) p 189-194