This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185158 Triangular array read by rows: T(n,k) (n>=1, 0<=k<=n-1, except 0<=k<=1 when n=1) = coefficient of x^k in expansion of (1/n)*Sum_{d|n} (mobius(d)*(1+x^d)^(n/d)). 4
 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 3, 5, 5, 3, 1, 0, 1, 3, 7, 8, 7, 3, 1, 0, 1, 4, 9, 14, 14, 9, 4, 1, 0, 1, 4, 12, 20, 25, 20, 12, 4, 1, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 0, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 0, 1, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,14 COMMENTS T(n,k) is the number of binary Lyndon words of length n containing k ones. - Joerg Arndt, Oct 21 2012 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened Joerg Arndt, Matters Computational (The Fxtbook), section 18.3.1 "Binary necklaces with fixed density", p. 382. Romeo Meštrović, Different classes of binary necklaces and a combinatorial method for their enumerations, arXiv:1804.00992 [math.CO], 2018. Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160. See Example 1. FORMULA T(n,k) =  1/n * sum( d divides gcd(n,k), mu(d) * C(n/d,k/d) ). - Joerg Arndt, Oct 21 2012 The prime rows are given by (1+x)^p/p, rounding non-integer coefficients to 0, e.g., (1+x)^2/2 = .5 + x + .5 x^2 gives (0,1,0), row 2 below. - Tom Copeland, Oct 21 2014 EXAMPLE The first few polynomials are: 1+x x x+x^2 x+x^2+x^3 x+2*x^2+2*x^3+x^4 x+2*x^2+3*x^3+2*x^4+x^5 x+3*x^2+5*x^3+5*x^4+3*x^5+x^6 ... The triangle begins: [ 1]  1, 1, [ 2]  0, 1, [ 3]  0, 1, 1, [ 4]  0, 1, 1, 1, [ 5]  0, 1, 2, 2, 1, [ 6]  0, 1, 2, 3, 2, 1, [ 7]  0, 1, 3, 5, 5, 3, 1, [ 8]  0, 1, 3, 7, 8, 7, 3, 1, [ 9]  0, 1, 4, 9, 14, 14, 9, 4, 1, [10]  0, 1, 4, 12, 20, 25, 20, 12, 4, 1, [11]  0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, [12]  0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, [13]  0, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, [14]  0, 1, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 1 ... MAPLE with(numtheory); W:=r->expand((1/r)*add(mobius(d)*(1+x^d)^(r/d), d in divisors(r))); for n from 1 to 14 do lprint(W(n)); od: for n from 1 to 14 do lprint(seriestolist(series(W(n), x, 50))); od: MATHEMATICA T[n_, k_] := DivisorSum[GCD[n, k], MoebiusMu[#] Binomial[n/#, k/#]&]/n; Table[T[n, k], {n, 1, 14}, {k, 0, Max[1, n-1]}] // Flatten (* Jean-François Alcover, Dec 02 2015 *) PROG (PARI) p(n) = if(n<=0, n==0, 'a0 + 1/n * sumdiv(n, d, moebius(d)*(1+x^d)^(n/d) )); /* print triangle: */ for (n=1, 17, v=Vec( polrecip(Pol(p(n), x)) ); v[1]-='a0; print(v) ); /* Joerg Arndt, Oct 21 2012 */ (PARI) T(n, k) = 1/n * sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) ); /* print triangle: */ { for (n=1, 17, for (k=0, max(1, n-1), print1(T(n, k), ", "); ); print(); ); } /* Joerg Arndt, Oct 21 2012 */ CROSSREFS Two other versions of this triangle are in A051168 and A092964. Sequence in context: A104244 A116403 A123149 * A185700 A061926 A180835 Adjacent sequences:  A185155 A185156 A185157 * A185159 A185160 A185161 KEYWORD nonn,tabf AUTHOR N. J. A. Sloane, Jan 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 05:41 EST 2019. Contains 319304 sequences. (Running on oeis4.)