login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001288 a(n) = binomial(n,11).
(Formerly M4850 N2073)
13
1, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, 705432, 1352078, 2496144, 4457400, 7726160, 13037895, 21474180, 34597290, 54627300, 84672315, 129024480, 193536720, 286097760, 417225900, 600805296, 854992152, 1203322288, 1676056044 (list; graph; refs; listen; history; text; internal format)
OFFSET

11,2

COMMENTS

Product of 11 consecutive numbers divided by 11!. - Artur Jasinski, Dec 02 2007

In this sequence there are no primes. - Artur Jasinski, Dec 02 2007

With a different offset, number of n-permutations (n>=11) of 2 objects: u,v, with repetition allowed, containing exactly (11) u's. Example: n=11, a(0)=1 because we have uuuuuuuuuuu n=12, a(1)=12 because we have uuuuuuuuuuuv, uuuuuuuuuuvu, uuuuuuuuuvuu, uuuuuuuuvuuu, uuuuuuuvuuuu, uuuuuuvuuuuu, uuuuuvuuuuuu, uuuuvuuuuuuu, uuuvuuuuuuuu, uuvuuuuuuuuu uvuuuuuuuuuu, vuuuuuuuuuuu. - Zerinvary Lajos, Aug 06 2008

Does not satisfy Benford's law (because n^11 does not, see Ross, 2012). - N. J. A. Sloane, Feb 09 2017

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.

L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.

J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=11..1000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

A. S. Chinchon, Mixing Benford, GoogleVis And On-Line Encyclopedia of Integer Sequences, 2014. Note: as of Feb 09 2017, the results in this page appear to be incorrect - N. J. A. Sloane, Feb 09 2017.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 261

Milan Janjic, Two Enumerative Functions

Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.

Index entries for sequences related to Benford's law

FORMULA

a(n) = -A110555(n+1,11). - Reinhard Zumkeller, Jul 27 2005

a(n+10)=n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)/11!. - Artur Jasinski, Dec 02 2007, R. J. Mathar, Jul 07 2009

G.f.: x^11/(1-x)^12. a(n) = binomial(n,11). - Zerinvary Lajos, Aug 06 2008, R. J. Mathar, Jul 07 2009

MAPLE

seq(binomial(n, 11), n=0..30); # Zerinvary Lajos, Aug 06 2008, R. J. Mathar, Jul 07 2009

MATHEMATICA

Table[n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)/11!, {n, 1, 100}] (* Artur Jasinski, Dec 02 2007 *)

Binomial[Range[11, 50], 11] (* Harvey P. Dale, Oct 02 2012 *)

PROG

(PARI) for(n=11, 50, print1(binomial(n, 11), ", ")) \\ G. C. Greubel, Aug 31 2017

CROSSREFS

Sequence in context: A162629 A008504 A008494 * A290894 A121665 A124863

Adjacent sequences:  A001285 A001286 A001287 * A001289 A001290 A001291

KEYWORD

nonn,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

Some formulas for other offsets corrected by R. J. Mathar, Jul 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 15:27 EDT 2017. Contains 292531 sequences.