This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003504 a(0)=a(1)=1; thereafter a(n+1) = sum(a(k)^2,k=0..n)/n (a(n) is not always integral!). (Formerly M0728) 12
 1, 1, 2, 3, 5, 10, 28, 154, 3520, 1551880, 267593772160, 7160642690122633501504, 4661345794146064133843098964919305264116096, 1810678717716933442325741630275004084414865420898591223522682022447438928019172629856 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The sequence appears with a different offset in some other sources. - Michael Somos, Apr 02 2006 Also known as Göbel's (or Goebel's) Sequence. Asymptotically, a(n) ~ n*C^(2^n) where C=1.0478... (A115632). A more precise asymptotic formula is given in A116603. - M. F. Hasler, Dec 12 2007 Let s(n) = (n-1)*a(n). By considering the p-adic representation of s(n) for primes p=2,3,...,43, one finds that a(44) is the first nonintegral value in this sequence. Furthermore, for n>44, the valuation of s(n) w.r.t. 43 is -2^(n-44), implying that both s(n) and a(n) are nonintegral. - M. F. Hasler and Max Alekseyev, Mar 03 2009 a(44) is approximately  5.4093*10^178485291567. - Hans Havermann, Nov 14 2017. The fractional part is simply 24/43 (see page 709 of  Guy (1988)). The more precise asymptotic formula is a(n+1) ~ C^(2^n) * (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...). - Michael Somos, Mar 17 2012 REFERENCES R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Sect. E15. Clifford Pickover, A Passion for Mathematics, 2005. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=0..16 R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986. R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy] H. W. Lenstra, Jr., R. K. Guy, and N. J. A. Sloane, Correspondence, 1975-1978 N. Lygeros & M. Mizony, Study of primality of terms of a_k(n)=(1+(sum from 1 to n-1)(a_k(i)^k))/(n-1) [Broken link?] D. Rusin, Law of small numbers [Broken link] D. Rusin, Law of small numbers [Cached copy] Eric Weisstein's World of Mathematics, Göbel's Sequence D. Zagier, Solution: Day 5, problem 3 FORMULA a(n+1) = ((n-1) * a(n) + a(n)^2) / n if n>1. - Michael Somos, Apr 02 2006 0 = a(n)*(+a(n)*(a(n+1) - a(n+2)) - a(n+1) - a(n+1)^2) +a(n+1)*(a(n+1)^2 - a(n+2)) if n>1. - Michael Somos, Jul 25 2016 EXAMPLE a(3) = (1 * 2 + 2^2) / 2 = 3 given a(2) = 2. MAPLE a:=2: L:=1, 1, a: n:=15: for k to n-2 do a:=a*(a+k)/(k+1): L:=L, a od:L; # Robert FERREOL, Nov 07 2015 MATHEMATICA a[n_] := a[n] = Sum[a[k]^2, {k, 0, n-1}]/(n-1); a[0] = a[1] = 1; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 06 2013 *) With[{n = 14}, Nest[Append[#, (#.#)/(Length[#] - 1)] &, {1, 1}, n - 2]] (* Jan Mangaldan, Mar 21 2013 *) PROG (PARI) A003504(n, s=2)=if(n-->0, for(k=1, n-1, s+=(s/k)^2); s/n, 1) \\ M. F. Hasler, Dec 12 2007 (Python) a=2; L=[1, 1, a]; n=15 for k in range(1, n-1): ....a=a*(a+k)//(k+1) ....L.append(a) L # Robert FERREOL, Nov 07 2015 CROSSREFS Cf. A005166, A005167, A108394, A115632, A116603 (asymptotic formula). Sequence in context: A000617 A132183 A259878 * A213169 A003182 A134294 Adjacent sequences:  A003501 A003502 A003503 * A003505 A003506 A003507 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS a(0)..a(43) are integral, but from a(44) onwards every term is nonintegral - H. W. Lenstra, Jr. Corrected and extended by M. F. Hasler, Dec 12 2007 Further corrections from Max Alekseyev, Mar 04 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 18:14 EDT 2019. Contains 327981 sequences. (Running on oeis4.)