This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033461 Number of partitions of n into distinct squares. 75
 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 2, 3, 1, 1, 4, 3, 0, 1, 2, 2, 1, 0, 1, 4, 3, 0, 2, 4, 2, 1, 3, 2, 1, 2, 3, 3, 2, 1, 3, 6, 3, 0, 2, 5, 3, 0, 1, 3, 3, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,26 COMMENTS "WEIGH" transform of squares A000290. a(n) = 0 for n in {A001422}, a(n) > 0 for n in {A003995}. - Alois P. Heinz, May 14 2014 Number of partitions of n in which each part i has multiplicity i. Example: a(50)=3 because we have [1,2,2,3,3,3,6,6,6,6,6,6], [1,7,7,7,7,7,7,7], and [3,3,3,4,4,4,4,5,5,5,5,5]. - Emeric Deutsch, Jan 26 2016 LINKS T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe) Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018. Vaclav Kotesovec, Graph - The asymptotic ratio M. V. N. Murthy, Matthias Brack, Rajat K. Bhaduri, Johann Bartel, Semi-classical analysis of distinct square partitions, arXiv:1808.05146 [cond-mat.stat-mech], 2018. FORMULA G.f.: Product_{n>=1} ( 1+x^(n^2) ). a(n) ~ exp(3 * 2^(-5/3) * Pi^(1/3) * ((sqrt(2)-1)*Zeta(3/2))^(2/3) * n^(1/3)) * ((sqrt(2)-1)*Zeta(3/2))^(1/3) / (2^(4/3) * sqrt(3) * Pi^(1/3) * n^(5/6)), where Zeta(3/2) = A078434. - Vaclav Kotesovec, Dec 09 2016 See Murthy, Brack, Bhaduri, Bartel (2018) for a more complete asymptotic expansion. - N. J. A. Sloane, Aug 17 2018 EXAMPLE a(50)=3 because we have [1,4,9,36], [1,49], and [9,16,25]. - Emeric Deutsch, Jan 26 2016 MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,        b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i-1))))     end: a:= n-> b(n, isqrt(n)): seq(a(n), n=0..100);  # Alois P. Heinz, May 14 2014 MATHEMATICA nn=10; CoefficientList[Series[Product[(1+x^(k*k)), {k, nn}], {x, 0, nn*nn}], x] (* T. D. Noe, Jul 24 2006 *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2 > n, 0, b[n - i^2, i-1]]]]; a[n_] := b[n, Floor[Sqrt[n]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *) nmax = 20; poly = ConstantArray[0, nmax^2 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, nmax^2, k^2, -1}]; , {k, 2, nmax}]; poly (* Vaclav Kotesovec, Dec 09 2016 *) PROG (PARI) a(n)=polcoeff(prod(k=1, sqrt(n), 1+x^k^2), n) (PARI) first(n)=Vec(prod(k=1, sqrtint(n), 1+'x^k^2, O('x^(n+1))+1)) \\ Charles R Greathouse IV, Sep 03 2015 CROSSREFS Cf. A003995, A001422, A242434 (the same for compositions), A078434, A279329. Sequence in context: A113406 A151851 A321447 * A143432 A137677 A015818 Adjacent sequences:  A033458 A033459 A033460 * A033462 A033463 A033464 KEYWORD nonn,nice,changed AUTHOR EXTENSIONS More terms from Michael Somos STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 02:57 EST 2018. Contains 317371 sequences. (Running on oeis4.)