This site is supported by donations to The OEIS Foundation.

CiteCi

From OeisWiki

Jump to: navigation, search


Contents

CiteCi

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Ci to Cz.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Johann Cigler, Some results and conjectures about recurrence relations for certain sequences of binomial sums (2006), arXiv:math.CO/0611189.
  2. Johann Cigler, Recurrence relations for powers of q-Fibonacci polynomials (2008); arXiv:0806.0805
  3. Johann Cigler, Some conjectures about q-Fibonacci polynomials (2008); arXiv:0805.0415
  4. Johann Ciger, Fibonacci polynomials, generalized Stirling numbers,.., arXiv:1103.2610
  5. J. Cigler, Some nice Hankel determinants. Arxiv preprint arXiv:1109.1449, 2011. See also http://homepage.univie.ac.at/johann.cigler/preprints/hankel-conjectures.pdf
  6. J. Cigler, Continued fractions associated with q-Schroeder-like numbers, PDF, 2012. Also arXiv preprint arXiv:1210.0372.
  7. J. Cigler, Hankel determinants of some polynomial sequences, PDF, 2012.
  8. J. Cigler, Some q-analogues of Fibonacci, Lucas and Chebyshev polynomials with nice moments, 2013; http://homepage.univie.ac.at/johann.cigler/preprints/cheb-survey.pdf
  9. J. Cigler, Some remarks about q-Chebyshev polynomials and q-Catalan numbers and related results, http://homepage.univie.ac.at/Johann.Cigler/preprints/chebyshev-survey.pdf, 2013.
  10. J. Cigler, Some notes on q-Gould polynomials, 2013; PDF
  11. J. Cigler, Some remarks on lattice paths in strips along the x-axis; http://homepage.univie.ac.at/johann.cigler/preprints/lattice-paths.pdf, 2014.
  12. J. Cigler, Some results and conjectures about a class of q-polynomials with simple moments, 2014; http://homepage.univie.ac.at/Johann.Cigler/preprints/q-pol.pdf
  13. Johann Cigler, Some elementary observations on Narayana polynomials and related topics, Preprint 2016; https://www.researchgate.net/profile/Johann_Cigler/publication/307864723_Some_elementary_observations_on_Narayana_polynomials_and_related_topics/links/57cfd8c308ae057987ad1819.pdf
  14. M. H. Cilasun, An Analytical Approach to Exponent-Restricted Multiple Counting Sequences, arXiv preprint arXiv:1412.3265, 2014
  15. M. H. Cilasun, Generalized Multiple Counting Jacobsthal Sequences of Fermat Pseudoprimes, Journal of Integer Sequences, Vol. 19, 2016, #16.2.3.
  16. Javier Cilleruelo and Florian Luca, On the sum of the first n primes, Q. J. Math., 59:4 (2008), 14 pp.
  17. Z. Cinkir, Effective Resistances, Kirchhoff index and Admissible Invariants of Ladder Graphs, arXiv preprint arXiv:1503.06353, 2015
  18. Zubeyir Cinkir, Effective Resistances and Kirchhoff index of Prism Graphs, arXiv:1704.03429 [math.CO], 2017.
  19. A. Cintrón-Arias, A. Godbole, A decade of undergraduate research for all East Tennessee State University mathematics majors, Involve, a Journal of Mathematics, 2014, Vol. 7:3 (2014).
  20. O. Cira, F. Smarandache, Solving Diophantine Equations, EuropaNova Publishers, Bruxelles, 2014.
  21. O. Cira, F. Smarandache, Luhn prime numbers, 2014; http://www.gallup.unm.edu/~smarandache/ScArt7/CP-LuhnPrimeNumbers.pdf
  22. Mircea I. Cirnu, Determinantal formulas for sum of generalized arithmetic-geometric series, Boletin de la Asociacion Matematica Venezolana, Vol. XVIII, No. 1 (2011), p. 13; http://www.emis.de/journals/BAMV/conten/vol18/BAMV_XVIII-1_p015-028.pdf.
  23. Barry Cipra, doi:10.1126/science.327.5968.943 What comes next?, Science vol. 327 no. 5968 (19 Feb 2010) p 943.
  24. Octavian Cira, Smarandache's Conjecture on Consecutive Primes, International J.Math. Combin. Vol. 4 (2014), 69-91; http://mathcombin.com/upload/file/20150127/1422320940239094100.pdf#page=74
  25. A. Claesson, Generalized Pattern Avoidance, FPSAC01, European Journal of Combinatorics 22 (2001), 961-971. (PostScript, Pdf)
  26. Anders Claesson, Mark Dukes and Martina Kubitzke, Partition and composition matrices, arXiv:1006.1312.
  27. Claesson, Anders; Jelínek, Vít; Jelínková, Eva; Kitaev, Sergey Pattern avoidance in partial permutations. Electron. J. Combin. 18 (2011), no. 1, Paper 25, 41 pp.
  28. A. Claesson, S. Kitaev and A. de Mier, An involution on bicubic maps and beta(0,1)-trees, arXiv preprint arXiv:1210.3219, 2012
  29. Anders Claesson, Sergey Kitaev, Kari Ragnarsson et al., Boolean complexes for Ferrers graphs (2008); arXiv:0808.2307
  30. Anders Claesson and Svante Linusson, "n! matchings, n! posets", Proc. Amer. Math. Soc. 139 (2011), 435-449; doi:10.1090/S0002-9939-2010-10678-0.
  31. Anders Claesson and Toufik Mansour, Permutations avoiding a pair of generalized patterns of the form x-yz or xy-z (2001), arXiv:math/0107044.
  32. A. Claesson and T. Mansour, Counting occurrences of a pattern of type (1,2) or (2,1) in permutations, Accepted for publication in Advances in Applied Mathematics. (PostScript, Pdf, Dvi)
  33. A. Claesson and T. Mansour, Enumerating Permutations Avoiding a Pair of Babson-Steingrímsson Patterns, (ps, pdf) Ars Combin. 77 (2005), 17-31.
  34. A. Claesson and T. K. Petersen, Conway's Napkin Problem, American Mathematical Monthly, 114 (No. 3, 2007), 217-231.
  35. Daniel T. Clancy and Steven J. Kifowit, A Closer Look at Bobo's Sequence, College Math. J., 45 (2014), 199-206.
  36. James A. Clapperton, Peter J. Larcombe, Eric J. Fennessey and Paul Levrie, A class of auto-identities for Catalan polynomials and Padé approximation, Congressus Numerantium, 189 (2008), 77-95.
  37. Brad Clardy, Properties of symmetric primes with implications for primality testing for extremely large numbers, DIMACS Workshop on The Mathematics of Post-Quantum Cryptography, January 12 - 16, 2015; http://dimacs.rutgers.edu/Workshops/Post-Quantum/abstracts.html#clardy ("If it weren't for the OEIS [this work] would not have been possible.")
  38. Lieven Clarisse, Sibasish Ghosh, Simone Severini et al., Entangling Power of Permutations (2005), arXiv:quant-ph/0502040.
  39. Lane Clark, "An Asymptotic Expansion for the Catalan-Larcombe-French Sequence", J. Integer Sequences, Volume 7, 2004, Article 04.2.1.
  40. Sean Clark, Anton Preslicka, Josh Schwartz and Radoslav Zlatev, Some combinatorial conjectures on a family of toric ideals: A report from the MSRI 2011 Commutative Algebra graduate workshop.
  41. Timothy B.P. Clark, Adrian Del Maestro, arXiv:1506.02048, Moments of the inverse participation ratio for the Laplacian on finite regular graphs, arXiv preprint, 2015. (A002851)
  42. Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, to appear in Involve; http://people.wku.edu/tom.richmond/Papers/CountConvexTopsFTOsets.pdf
  43. W. Edwin Clark, Mohamed Elhamdadi, Xiang-dong Hou, Masahico Saito and Timothy Yeatman, Connected Quandles Associated with Pointed Abelian Groups, Arxiv preprint arXiv:1107.5777, 2011
  44. Clark, W. Edwin; Elhamdadi, Mohamed; Saito, Masahico; Yeatman, Timothy Quandle colorings of knots and applications. J. Knot Theory Ramifications 23 (2014), no. 6, 1450035, 29 pp.
  45. W. Edwin Clark and Xiang-dong Hou, Galkin Quandles, Pointed Abelian groups and sequence A000712, arXiv:1108.2215
  46. J. C. Claussen, doi:10.1063/1.2939398 Time evolution of the rule 150 cellular automaton activity from a Fibonacci iteration, J. Math. Phys 49 (2008)
  47. Sean Cleary, M Fischer, RC Griffiths, R Sainudiin, Some distributions on finite rooted binary trees, UCDMS Research Report NO. UCDMS2015/2, School of Mathematics and Statistics, University of Canterbury, Christchurch, NZ, 2015; http://lamastex.org/preprints/20151231_SomeDistsFRBTrees.pdf
  48. Clift, Neill Michael Calculating optimal addition chains. Computing 91 (2011), no. 3, 265-284.
  49. Benoit Cloitre, Chemins dans un tableau arithmetique, 2007.
  50. B. Cloitre, arXiv:1107.0812 A tauberian approach to RH, 2011
  51. B. Cloitre, On the fractal behavior of primes, 2011; http://bcmathematics.monsite-orange.fr/FractalOrderOfPrimes.pdf
  52. Benoit Cloitre, N. J. A. Sloane and Matthew J. Vandermast, "Numerical Analogues of Aronson's Sequence", J. Integer Sequences, Volume 6, 2003, Article 03.2.2.
  53. C Cobeli, M Prunescu, A Zaharescu, A growth model based on the arithmetic Z-game, arXiv preprint arXiv:1511.04315, 2015
  54. C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11, 2014.
  55. S. Cockburn and J. Lesperance, Deranged socks, Mathematics Magazine, 86 (2013), 97-109.
  56. Cockburni, Sally; Song, Yonghyun The homomorphism poset of K2,n. Australas. J. Combin. 57 (2013), 79-108.
  57. P. Codara, O. M. D'Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700, 2013. Also Codara, Pietro; D'Antona, Ottavio M.; Hell, Pavol. A simple combinatorial interpretation of certain generalized Bell and Stirling numbers. Discrete Math. 318 (2014), 53--57. MR3141626.
  58. Pietro Codara, Ottavio M. D'Antona and Vincenzo Marra, Best Approximation of Ruspini Partitions in Gˆdel Logic, in Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Computer Science, Volume 4724/2007, Springer-Verlag.
  59. Pietro Codara, Ottavio M. D'Antona and Vincenzo Marra, An analysis of Ruspini partitions in Gˆdel logic, International Journal of Approximate Reasoning, Volume 50, Issue 6, June 2009, Pages 825-836.
  60. Pietro Codara, Ottavio M. D'Antona, Francesco Marigo, Corrado Monti, arXiv:1307.1348, Making simple proofs simpler
  61. M. Codish, L. Cruz-Filipe, P. Schneider-Kamp, The Quest for Optimal Sorting Networks: Efficient Generation of Two-Layer Prefixes, arXiv preprint arXiv:1404.0948, 2014
  62. M Codish, M Frank, A Itzhakov, A Mille, Computing the Ramsey Number R (4, 3, 3) using Abstraction and Symmetry breaking, preprint arXiv:1510.08266, 2015
  63. Michael Codish, G Gange, A Itzhakov, PJ Stuckey, Breaking Symmetries in Graphs: The Nauty Way, Preprint 2016; http://people.eng.unimelb.edu.au/pstuckey/papers/cp2016d.pdf
  64. Michael Codish, Alice Miller, Patrick Prosser and Peter Stuckey, Breaking Symmetries in Graph Representation. International Joint Conference on Artificial Intelligence (IJCAI 2013). Beijing, China, August 2013. To appear.
  65. Mark W. Coffey, Reductions of particular hypergeometric functions 3F2 (a, a+1/3, a+2/3; p/3, q/3; +-1), arXiv preprint arXiv:1506.09160, 2015
  66. M. W. Coffey, V. de Angelis, A. Dixit, V. H. Moll, et al., The Zagier polynomials. Part II: Arithmetic properties of coefficients, PDF, 2013.
  67. Mark W. Coffey, James L. Hindmarsh, Matthew C. Lettington, John Pryce, On Higher Dimensional Interlacing Fibonacci Sequences, Continued Fractions and Chebyshev Polynomials, arXiv preprint arXiv:1502.03085, 2015.
  68. MW Coffey, MC Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv preprint arXiv:1510.05402, 2015
  69. Mark W. Coffey and Matthew C. Lettington, Binomial Polynomials mimicking Riemann's Zeta Function, arXiv:1703.09251 [math.NT], 2017.
  70. A. M. Cohen, Communicating mathematics across the web, pp. 283-300 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
  71. A. M. Cohen, H. Cuypers, E. Reinaldo Barreiro and H. Sterk, Interactive Mathematical Documents on the Web, to appear in Proceedings of Dagstuhl Conference.
  72. D. Cohen, Machine Head, New Scientist, 24 Feb 2001, Vol. 169, Number 2279, pp. 26-29. (Article about artificial intelligence that mentions the database.)
  73. Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
  74. Emma Cohen, PROBLEMS IN CATALAN MIXING AND MATCHINGS IN REGULAR HYPERGRAPHS, PhD Dissertation, Math. Dept., Georgia Tech., Dec 2016; www.aco.gatech.edu/sites/default/files/documents/cohen-thesis.pdf
  75. G. L. Cohen and D. E. Iannucci, "Derived Sequences", J. Integer Sequences, Volume 6, 2003, Article 03.1.1.
  76. Gerard Cohen and Jean-Pierre Flori, On a generalized combinatorial conjecture involving addition mod 2^k-1, Cryptology eprint archive 2011/400, doi:10.1504/IJICOT.2017.083831
  77. Jonathan D. Cohen, Concepts and Algorithms for Polygonal Simplification, SIGGRAPH 99 Course Tutorial #20: Interactive Walkthroughs of Large Geometric Datasets. pp. C1-C34. 1999. also in SIGGRAPH 2000 Course Tutorial.
  78. Moshe Cohen, The Jones polynomials of 3-bridge knots via Chebyshev knots and billiard table diagrams, arXiv preprint arXiv:1409.6614, 2014
  79. M. Cohen and M. Teicher, Kauffman's clock lattice as a graph of perfect matchings: a formula for its height, http://u.math.biu.ac.il/~cohenm10/talks/MosheCohenPreprintClockOct.pdf, 2012. Also Electronic Journal of Combinatorics, 21 (2104).
  80. C. Coker, A family of eigensequences, Discrete Math., 282 (2004), 249-250.
  81. Coker, Curtis, Enumerating a class of lattice paths. Discrete Math. 271 (2003), no. 1-3, 13-28.
  82. S. Cokus, Summing Sums Symbolically: How Computers Revolutionized the Field of Combinatorial Identities, ACMS Seminar, Winter Quarter 2001.
  83. MICAH SPENCER COLEMAN, ASYMPTOTIC ENUMERATION IN PATTERN AVOIDANCE AND IN THE THEORY OF SET PARTITIONS AND ASYMPTOTIC UNIFORMITY, PDF
  84. C. S. Collberg and T. A. Proebsting, AlgoVista - A Search Engine for Computer Scientists, Arizona Computer Science, Technical Report, 2000.
  85. C. S. Collberg and T. A. Proebsting, Problem Classification using Program Checking, Fun with Algorithms 2, May 2001.
  86. Collberg, Christian S.; and Proebsting, Todd A., Problem identification using program checking. Discrete Appl. Math. 144 (2004), no. 3, 270-280.
  87. A. Collins et al., Binary words, n-color compositions and ..., Fib. Quarterly, 51 (2013), 130-136.
  88. BENOIT COLLINS, ION NECHITA AND DEPING YE, THE ABSOLUTE POSITIVE PARTIAL TRANSPOSE PROPERTY FOR RANDOM INDUCED STATES, Arxiv preprint arXiv:1108.1935, 2011
  89. G. E. Collins and W. Krandick, On the computing time of the continued fractions method, Journal of Symbolic Computation, Volume 47, Issue 11, November 2012, Pages 1372-1412.
  90. Karen L. Collins, Ann N. Trenk, Finding Balance: Split Graphs and Related Classes, arXiv:1706.03092 [math.CO], June 2017
  91. Laura Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv preprint arXiv:1604.00803, 2016
  92. P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010), http://pierre.colomb.me/data/paper/icfca2010.pdf
  93. Pierre Colomb, Alexis Irlande, Olivier Raynaud and Yoan Renaud, About the Recursive Decomposition of the lattice of co-Moore Families, http://www.colomb.me/pierre/data/paper/icfca2011.pdf. Probably the following is essentially the same paper: P. Colomb, A. Irlande, O. Raynaud and Y. Renaud, Recursive decomposition and bounds of the lattice of Moore co-families, Annals of Mathematics and Artificial Intelligence, February 2013, Volume 67, Issue 2, pp 109-122.
  94. P. Colomb, A. Irlande, O. Raynaud, Y. Renaud, Recursive decomposition tree of a Moore co-family and closure algorithm, Annals of Mathematics and Artificial Intelligence, 2013, doi:10.1007/s10472-013-9362-x.
  95. Simon Colton, "Refactorable Numbers - A Machine Invention", J. Integer Sequences, Volume 2, 1999, Article 99.1.2.
  96. S. Colton, Theory Formation Applied to Learning, Discovery and Problem Solving, presented at Machine Intelligence 17, Bury St. Edmunds, July 2000.
  97. S. Colton, An Application-based Comparison of Automated Theory Formation and Inductive Logic Programming, Electronic Transactions on Artificial Intelligence, Vol. 4 (2000), Section B, pp. 97-117.
  98. S. Colton, Automated Theory Formation Applied to Four Learning Tasks, Linkoping Electronic Articles in Computer and Information Science, Vol. 5 (2000): nr 38.
  99. S. Colton, Automated Theorem Discovery: A Future Direction for Theorem Provers, Proceedings of the IJCAR workshop on Future Directions in Automated Reasoning, Siena, Italy, 2001.
  100. S. Colton, Mathematics - a new domain for datamining?, Proc IJCAI-01, Seattle, 2001
  101. Colton, Simon, Automated conjecture making in number theory using HR, Otter and Maple. J. Symbolic Comput. 39 (2005), no. 5, 593-615.
  102. S. Colton, A. Bundy and T. Walsh, HR - A system for machine discovery in finite algebra, Proceedings of the machine discovery workshop, European Conference on Artificial Intelligence, 1998. (postscript)
  103. S. Colton, A. Bundy and T. Walsh, Automated Discovery in Pure Mathematics, Proceedings of the ECAI-98 workshop on machine discovery, 1998.
  104. S. Colton, A. Bundy and T. Walsh, Automatic Concept Formation in Pure Mathematics. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999. (postscript)
  105. S. Colton, A. Bundy and T. Walsh, On the Notion of Interestingness in Automated Mathematical Discovery, to appear in the Special Issue of the International Journal of Human Computer Studies, 2000.
  106. S. Colton, A. Bundy and T. Walsh, Automatic Invention of Integer Sequences, in Proceedings, Seventeenth National Conference on Artificial Intelligence (Austin, Texas, July 30 - June 5, 2000), AAAI Press, 2000, to appear. [Winner of prize paper award] (postscript)
  107. S. Colton, A. Bundy and T. Walsh, Automatic identification of mathematical concepts, Proc ICML-2000, Stanford, CA, 2000.
  108. S. Colton and L. Dennis, The NumbersWithNames Program, 7th International Symposium on Artificial Intelligence and Mathematics, 2002.
  109. S. Colton and G. Steel, Artificial Intelligence and Scientific Creativity , Quarterly Journal of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour, Volume 102, Summer/Autumn 1999.
  110. Marius Coman, The Math Encyclopedia of Smarandache Type Notions, Vol. 1, Number Theory, 2013 Education Publishing, Columbus, OH, 2013, 134 pages. [Note: this URL does not contain a typo - it really is www.rxiv.org, NOT www.arxiv.org!]
  111. Marius Coman, Conjectures on types of primes and Fermat pseudoprimes, many based on Smarandache function [Note: this URL does not contain a typo - it really is www.vixra.org, NOT www.arxiv.org!]
  112. Marius Coman, "Conjectures on Primes and Fermat Pseudoprimes, Many Based on Smarandache Function", Education Publishing, Columbus, Ohio, 2014.
  113. Marius Coman, SEQUENCES OF INTEGERS, CONJECTURES AND NEW ARITHMETICAL TOOLS, Education Publishing, Columbus, Ohio, 2015; https://www.researchgate.net/profile/Marius_Coman/publication/277434066_Sequences_of_integers_conjectures_and_new_arithmetical_tools/links/556acca008aeccd7773a06c9.pdf.
  114. M. Coman, Ten prime-generating quadratic polynomials, Preprint 2015; https://www.researchgate.net/profile/Marius_Coman/publication/277912540_Ten_prime-generating_quadratic_polynomials/links/55769b4c08aeb6d8c01af38c.pdf
  115. Marius Coman, Conjecture that states that a Mersenne number with odd exponent is either prime either divisible by a 2-Poulet number, 2015; https://www.researchgate.net/profile/Marius_Coman/publication/280626311_Conjecture_that_states_that_a_Fermat_number_is_either_prime_either_divisible_by_a_2-Poulet_number/links/55bfd1f808ae9289a09b62cb.pdf
  116. M. Coman, On the special relation between the numbers of the form 505+ 1008k and the squares of primes, 2015; https://www.researchgate.net/profile/Marius_Coman/publication/280626584_On_the_special_relation_between_the_numbers_of_the_form_5051008k_and_the_squares_of_primes/links/55bfdc6208ae9289a09b63a0.pdf
  117. L. Comtet, Advanced Combinatorics, Reidel, 1974.
  118. G. Conant, Magmas and Magog Triangles, http://homepages.math.uic.edu/~gconant/Math/magmas.pdf, 2014.
  119. Josep Conde, Mirka Miller, Josep M. Miret, Kumar Saurav, On the Nonexistence of Almost Moore Digraphs of Degree Four and Five, Mathematics in Computer Science (2015) p 1-5.
  120. Marston Conder, S Du, R Nedela, M Skoviera, Regular maps with nilpotent automorphism group, Journal of Algebraic Combinatorics, December 2016, Volume 44, Issue 4, pp 863–874; doi:10.1007/s10801-016-0692-8
  121. Marston Conder, George Havas and M. F. Newman, On one-relator quotients of the modular group, in Groups St Andrews 2009 in Bath (proceedings), vol. 1, London Math. Society Lecture Note Series, No. 387, Cambridge University Press, pp. 183-197.
  122. Marston Conder, Tomaž Pisanski, Arjana Žitnik, Vertex-transitive graphs and their arc-types, preprint arXiv:1505.02029, 2015. (A002513)
  123. D. Condon, S. Coskey, L. Serafin, C. Stockdale, On generalizations of separating and splitting families, arXiv preprint arXiv:1412.4683, 2014
  124. A. Conflitti, C. M. Da Fonseca and R. Mamede, doi:10.1016/j.laa.2011.07.043 The maximal length of a chain ... Lin. Algebra Applic. (2011)
  125. Alessandro Conflitti, C. M. da Fonseca and Ricardo Mamede, On the Largest Size of an Antichain in the Bruhat Order for A(2k,k), ORDER, 2011, doi:10.1007/s11083-011-9241-1
  126. Alessandro Conflitti, C. M. Da Fonseca and Ricardo Mamede, The maximal length of a chain in the Bruhat order for a class of binary matrices, http://www.mat.uc.pt/preprints/ps/pre1118.ps
  127. ALESSANDRO CONFLITTI, C. M. DA FONSECA AND RICARDO MAMEDE, On the largest size of an antichain in the Bruhat order for A(2k, k), http://www.mat.uc.pt/preprints/ps/pre1125.ps.
  128. L. Connell, M. Levine, B. Mathes, J. Sukiennik, Toeplitz Transforms of Fibonacci Sequences, Preprint, 2015; http://www.colby.edu/math/program/studentpapers/2015-ConnellLevineMathesSukiennik.pdf
  129. Matthew M. Conroy, "A Sequence Related to a Conjecture of Schinzel", J. Integer Sequences, Volume 4, 2001, Article 01.1.7.
  130. Matthew M. Conroy, Travis Scholl, Stephanie Anderson, Shujing Lyu, Daria Micovic, WXML Final Report: OEIS/Wikipedia Task Force, University of Washington, 2016. [1]
  131. Pierluigi Contucci, Emanuele Panizzi, Federico Ricci-Tersenghi, and Alina Sîrbu, A new dimension for democracy: egalitarianism in the rank aggregation problem, Arxiv preprint arXiv:1406.7642, 2014.
  132. Pierluigi Contucci, Emanuele Panizzi, Federico Ricci-Tersenghi & Alina Sîrbu, Egalitarianism in the rank aggregation problem: a new dimension for democracy, preprint. (A000670)
  133. J. H. Conway, "On Happy Factorizations", J. Integer Sequences, Volume 1, 1998, Article 98.1.1.
  134. J. H. Conway, E. M. Rains, N. J. A. Sloane, On the existence of similar sublattices, arXiv:math/0207177
  135. J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389.
  136. C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
  137. C. K. Cook et al., Higher-order Boustrophedon transforms ..., Fib. Q., 55 (No. 3, 2017), 201-208.
  138. David Cook II, Nauty in Macaulay2, arXiv:1010.6194 [math.CO]
  139. David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140, 2013
  140. M. Cook and M. Kleber, arXiv:math.CO/0002220 Tournament sequences and Meeussen sequences, Electronic Journal of Combinatorics, Vol. 7(1) 2000, article #R44.
  141. Michael Coons, An Irrationality Measure for Regular Paperfolding Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.6
  142. M. Coons, J. Shallit, doi:10.1016/j.disc.2011.07.029 A pattern sequence approach to Stern's sequence, Disc. Math. 311 (22) (2011) 2630-2633
  143. Alec S. Cooper, Oleg Pikhurko, John R. Schmitt, Gregory S. Warrington, Martin Gardner's minimum no-3-in-a-line problem, arXiv:1206.5350 [math.CO].
  144. CURTIS COOPER, S MILLER, PJC MOSES, M SAHIN, et al., ON IDENTITIES OF RUGGLES, HORADAM, HOWARD, AND YOUNG, Preprint, 2016; http://thotsaporn.com/Cooper.pdf
  145. C. Cooper and M. Wiemann, Divisibility of an F-L Type Convolution, Applications of Fibonacci Numbers, Volume 9.
  146. Joseph E. Cooper III, A recurrence for an expression involving double factorials, arXiv:1510.00399 [math.CO], 2015.
  147. Joshua Cooper and Aaron Dutle, Greedy Galois Games, Amer. Math. Mnthly, 120 (2013), 441-451. arXiv:1110.1137
  148. Joshua N. Cooper and Alexander W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors; http://www.math.sc.edu/~cooper/Sigma.pdf, 2012. arXiv:1409.2909, and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Cooper/cooper3.html">J. Int. Seq. 16 (2013) #13.1.8</a>
  149. Joshua Cooper and Danny Rorabaugh, Asymptotic Density of Zimin Words, arXiv preprint arXiv:1510.03917
  150. Shaun Cooper, J Guillera, A Straub, W Zudilin, Crouching AGM, Hidden Modularity, arXiv preprint arXiv:1604.01106, 2016
  151. Shaun Cooper, J. G. Wan and W Zudilin, Holonomic alchemy and series for 1/pi, arXiv preprint arXiv:1512.04608, 2015
  152. Shaun Cooper, Dongxi Ye, Level 14 AND 15 Analogues of Ramanujan's Elliptic Functions to Alternative Bases, preprint. (A028887)
  153. J. Copeland and J. Haemer, Odds and Ends, SunExpert, May 1999, pp. 50-53.
  154. J. Copeland and J. Haemer, High-School Algebra, Backwards, SunExpert, Feb 2001, pp. 34-37.
  155. Tom Copeland, Lagrange a la Lah, at http://tcjpn.wordpress.com/
  156. Tom Copeland, Mathemagical Forests, at http://tcjpn.wordpress.com/
  157. R. Coquereaux, Quantum McKay correspondence and global dimensions for fusion and module-categories associated with Lie groups, arXiv preprint arXiv:1209.6621, 2012
  158. R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015
  159. R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694, 2013
  160. Robert Cori, Indecomposable permutations, hypermaps and labeled Dyck paths, Journal of Combinatorial Theory, Series A, In Press, Corrected Proof, Available online 21 May 2009.
  161. R. Cori, G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628, 2013
  162. R. Cori, G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344; http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewFile/dmAT0130/4488
  163. Robert Cori, Gabor Hetyei, Genus one partitions, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, pp. 333-344, <hal-01207612>
  164. R. M. Corless, Symbolic Computation in Nonlinear Dynamics, Proceedings of Let's Face Chaos Through Nonlinear Dynamics, Ljubljana, Slovenia, 1993.
  165. Robert M. Corless, N Fillion, Backward Error Analysis for Perturbation Methods, arXiv preprint arXiv:1609.01321, 2016
  166. Robert M. Corless and Steven E. Thornton, The bohemian eigenvalue project, Newsletter, ACM Communications in Computer Algebra, Volume 50 Issue 4, December 2016, p. 158-160. doi:10.1145/3055282.3055289
  167. Ruth Corran, Matthieu Picantin, A new Garside structure for braid groups of type (e,e,r) (2009) arXiv:0901.0645
  168. B. Correll, The density of Costas arrays and three-free permutations, in Statistical Signal Processing Workshop (SSP), 2012 IEEE, Date of Conference: 5-8 Aug. 2012, Pages 492 - 495.
  169. Sylvie Corteel and Pawe Hitczenko, "Generalizations of Carlitz Compositions", J. Integer Sequences, Volume 10, 2007, Article 07.8.8.
  170. Sylvie Corteel, Megan A. Martinez, Carla D. Savage, and Michael Weselcouch, Patterns in Inversion Sequences I, arXiv:1510.05434[math.CO] "We especially owe a debt of gratitude to Neil Sloane and the OEIS Foundation, Inc. Our work was greatly facilitated by the On-Line Encyclopedia of Integer Sequences".
  171. C Coscia, J DeWitt, F Yang, Y Zhang, Online and Random Domination of Graphs, arXiv preprint arXiv:1509.08876, 2015
  172. J. B. Cosgrave and K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, 118 (Nov. 2011), 812-829.
  173. J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013; doi:10.1007/s10474-013-0357-1.
  174. John B. Cosgrave and Karl Dilcher, The multiplicative orders of certain Gauss factorials, II, Preprint, 2014; Funct. Approx. Comment. Math. Volume 54, Number 1 (2016), 73-93.
  175. J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp., to appear 2016; http://johnbcosgrave.com/publications.php (See paper #10).
  176. G. E. Cossali, "A Common Generating Function for Catalan Numbers and Other Integer Sequences", J. Integer Sequences, Volume 6, 2003, Article 03.1.8.
  177. D. Coupier, A. Desolneux and B. Ycart, Image Denoising by Statistical Area Thresholding, Journal of Mathematical Imaging and Vision, Volume 22, Numbers 2-3 / May, 2005.
  178. Julien Courtiel, K Yeats, N Zeilberger, Connected chord diagrams and bridgeless maps, arXiv preprint arXiv:1611.04611, 2016
  179. M. A. Covington, The number of distinct alignments of two strings, (pdf, ps), Journal of Quantitative Linguistics, 2004, to appear.
  180. Simon Cowell, A Formula for the Reliability of a d-dimensional Consecutive-k-out-of-n:F System, arXiv preprint arXiv:1506.03580, 2015
  181. John R. Cowles and Ruben Gamboa, Verifying Sierpinski and Riesel Numbers in ACL2, Arxiv preprint arXiv:1110.4671, 2011
  182. Danielle Cox and K. McLellan, A problem on generation sets containing Fibonacci numbers, Fib. Quart., 55 (No. 2, 2017), 105-113.
  183. Darrell Cox, The 3n + 1 Problem: A Probabilistic Approach, Journal of Integer Sequences, Vol. 15 (2012), #12.5.2.
  184. D. A. Cox and J. Shurman, Geometry and number theory on clovers, Amer. Math. Monthly, 112 (2005), 682-704.
  185. Gregory Emmett Coxson and Jon Carmelo Russo, Enumeration and Generation of PSL Equivalence Classes for Quad-Phase Codes of Even Length, IEEE Transactions on Aerospace and Electronic Systems, Year: 2017, Volume: 53, Issue: 4, Pages: 1907 - 1915. doi:10.1109/TAES.2017.2675238 ["If this initial subsequence is tried in the query function at the OEIS, the query returns a match with sequence A225826", "The following result is from the OEIS, sequence A225826"]
  186. James Cranch, Representing and Enumerating Two-Dimensional Pasting Diagrams, http://jdc41.user.srcf.net/research/pasting/Pasting.pdf, 2013.
  187. Harry Crane. (2015) Left-right arrangements, set partitions, and pattern avoidance . Australasian Journal of Combinatorics, 61(1):57-72.
  188. Harry Crane, The ubiquitous Ewens sampling formula, preprint, 2015; PDF
  189. Harry Crane, Stephen DeSalvo, Pattern Avoidance for Random Permutations, arXiv:1509.07941.
  190. H. Crane and P. McCullagh. (2015) Reversible Markov structures on divisible set partitions. Journal of Applied Probability, 52(3), to appear. http://www.stat.rutgers.edu/home/hcrane/Publications/15253-final.pdf
  191. Selden Crary, Factorization of the Determinant of the Gaussian-Covariance Matrix of Evenly Spaced Points Using an Inter-dimensional Multiset Duality, arXiv preprint arXiv:1406.6326, 2014
  192. Selden Crary, Tatiana Nizhegorodova, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ia. MINOS for IMSPE Evaluation and Optimal-IMSPE-Design Search, arXiv:1704.06250 [stat.ME], 2017.
  193. Charles Cratty, Samuel Erickson, Frehiwet Negass, Lara Pudwell, Pattern Avoidance in Double Lists, preprint. (A010854, A005843, A008585, A052905, A183897, A000032, A000325)
  194. Tony Crilly and Colin R. Fletcher, The 'hitchhiker triangle' and the problem of perimeter = area, The Mathematical Gazette, Volume 99 / Issue 546 / November 2015, pp 402-415.
  195. Andrew Crites, Enumerting pattern avoidance for affine permutations, El. J. Combinat. 17 (2010) #R127
  196. Cropper, Sebrina Ruth, "Ranking Score Vectors of Tournaments" (2011). All Graduate Reports and Creative Projects. Paper 91. Utah State University, School of Graduate Studies, http://digitalcommons.usu.edu/gradreports/91
  197. S. Crowley, Some Fractal String and Hypergeometric Aspects of the Riemann Zeta Function, http://www.vixra.org/abs/1202.0066, 2012
  198. Stephen Crowley, A Mysterious Three Term Integer Sequence Related to a Lambert W Function Solution to a Certain Transcendental Equation
  199. S. Crowley, Mellin and Laplace Integral Transforms Related to the Harmonic Sawtooth Map and a Diversion Into The Theory Of Fractal Strings, http://vixra.org/pdf/1202.0079v2.pdf, 2012
  200. Stephen Crowley, Two new zeta constants: fractal string, continued fraction and hypergeometric aspects of the Riemann Zeta Function, arXiv:1207.1126
  201. S. Crowley, Integral Transforms of the Harmonic Sawtooth Map, The Riemann Zeta Function, Fractal Strings, and a Finite Reflection Formula, arXiv preprint arXiv:1210.5652, 2012
  202. J. Cummings, D. Kral, F. Pfender, K. Sperfeld et al., Monochromatic triangles in three-coloured graphs, Arxiv preprint arXiv:1206.1987. 2012.
  203. F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix for chaotic cavities, arXiv preprint arXiv:1412.2172, 2014
  204. FD Cunden, F Mezzadri, N Simm, P Vivo, Correlators for the Wigner-Smith time-delay matrix of chaotic cavities, arXiv preprint arXiv:1601.06690, 2016; Journal of Physics A: Mathematical and Theoretical, 49(18), 18LT01.
  205. K.K.A. Cunningham, Tom Edgar, A.G. Helminck, B.F. Jones, H. Oh, R. Schwell, and J.F. Vasquez, doi:10.1285/i15900932v34n2p23 On the Structure of Involutions and Symmetric Spaces of Dihedral Groups, Note di Matematica, Vol. 34 No. 2 (2014). See also arXiv:1205.3207, 2012.
  206. Michael Cuntz, Integral modular data and congruences (2006), arXiv:math/0611233; Journal of Algebraic Combinatorics, Volume 29, Number 3 / May, 2009.
  207. James Currie, Narad Rampersad, Growth rate of binary words avoiding xxx^R, arXiv preprint arXiv:1502.07014, 2015 JIS 18 (2015) 15.10.3
  208. J. Currie, N. Rampersad, Binary words avoiding xx^Rx and strongly unimodal sequences, arXiv preprint arXiv:1508.02964, 2015
  209. B. Curry, G. A. Wiggins and G. Hayes, Representing trees with constraints, Lloyd, J. (ed.) et al., Computational Logic- CL 2000. 1st International Conference, London, GB, July 24-28, 2000. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 1861, 315-325 (2000). Also another version. doi:10.1007/3-540-44957-4_21
  210. T. L. Curtright, More on Rotations as Spin Matrix Polynomials, arXiv preprint arXiv:1506.04648, 2015
  211. T. L. Curtright, D. B. Fairlie, C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541, 2014
  212. T. L. Curtright, T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767, 2014.
  213. Luisa Cutillo, Giuseppe De Marco and Chiara Donnini, Networks of Financial Contagion, Advanced Dynamic Modeling of Economic and Social Systems, Studies in Computational Intelligence Volume 448, 2013, pp 31-48; doi:10.1007/978-3-642-32903-6_4.
  214. Aleksandar Cvetkovic, Predrag Rajkovic and Milos Ivkovic, "Catalan Numbers, the Hankel Transform and Fibonacci Numbers", J. Integer Sequences, Volume 5, 2002, Article 02.1.3.
  215. Cvetkovic, Dragos; Fowler, Patrick; Rowlinson, Peter; Stevanovic, Dragan, Constructing fullerene graphs from their eigenvalues and angles. Special issue on algebraic graph theory (Edinburgh, 2001). Linear Algebra Appl. 356 (2002), 37-56.
  216. Predrag Cvitanovic, Asymptotic estimates and gauge invariance, Nuclear Physics B, Volume 127, Issue 1, 22 August 1977, Pages 176-188.
  217. P. Cvitanovic', Group Theory, webbook.
  218. Eva Czabarka, Peter L. Erdos, Virginia Johnson, Anne Kupczok and Laszlo A. Szekely, Asymptotically normal distribution of some tree families relevant for phylogenetics, and of partitions without singletons, Arxiv preprint arXiv:1108.6015, 2011
  219. É. Czabarka, R. Flórez, L. Junes, Some Enumerations on Non-Decreasing Dyck Paths, The Electronic Journal of Combinatorics, 22(1), 2015, #P1.3.
  220. É. Czabarka, R. Flórez, L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
  221. Mariusz Czekala and Agnieszka Bukietyńska, Distribution of Inversions and the Power of the τ-Kendall's Test</a>, in J. Świątek, Z. Wilimowska, L. Borzemski, A. Grzech (eds), Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology - ISAT 2016 - Part III, pp. 175-185. doi:10.1007/978-3-319-46589-0_14

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.
Personal tools