This site is supported by donations to The OEIS Foundation.


From OeisWiki
Jump to: navigation, search

"If it weren't for the OEIS [this work] would not have been possible." [Brad Clardy, 2015]

"The encyclopaedia of integer sequences has hundreds of thousands of sequences. The sequences we have mentioned can be found using the OEIS search facility. It will be noticed that many of the sequences are accompanied by generating code written in various languages, including Haskell." [Kieran Clenaghan, 2018]

"A fantastic source for novel ideas for sequence data is the Online Encyclopedia of Integer Sequences." [Nick Collins, 2019]

"We also proved thanks to computer experiments and the OEIS [7] that prographs made of only one sort of operator with two inputs and three outputs can model the biological notion of tandem duplication trees." [Christophe Cordero, 2018]

"We especially owe a debt of gratitude to Neil Sloane and the OEIS Foundation, Inc. Our work was greatly facilitated by the On-Line Encyclopedia of Integer Sequences." [Sylvie Corteel et al., 2015]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Ci to Cz.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.


  1. Ferdinando Cicalese, Zsuzsanna Lipták, Massimiliano Rossi, Bubble-Flip—A new generation algorithm for prefix normal words, Theoretical Computer Science, Volume 743, 26 September 2018, Pages 38-52.
  2. Ferdinando Cicalese, Zsuzsanna Lipták, Massimiliano Rossi, On Infinite Prefix Normal Words, arXiv:1811.06273 [math.CO], 2018. (A194850, A238109, A238110)
  3. Johann Cigler, Some results and conjectures about recurrence relations for certain sequences of binomial sums (2006), arXiv:math.CO/0611189.
  4. Johann Cigler, Recurrence relations for powers of q-Fibonacci polynomials (2008); arXiv:0806.0805
  5. Johann Cigler, Some conjectures about q-Fibonacci polynomials (2008); arXiv:0805.0415
  6. Johann Cigler, Fibonacci polynomials, generalized Stirling numbers,.., arXiv:1103.2610
  7. J. Cigler, Some nice Hankel determinants. Arxiv preprint arXiv:1109.1449, 2011. See also
  8. J. Cigler, Continued fractions associated with q-Schroeder-like numbers, PDF, 2012. Also arXiv preprint arXiv:1210.0372.
  9. J. Cigler, Hankel determinants of some polynomial sequences, PDF, 2012.
  10. J. Cigler, Some q-analogues of Fibonacci, Lucas and Chebyshev polynomials with nice moments, 2013;
  11. J. Cigler, Some remarks about q-Chebyshev polynomials and q-Catalan numbers and related results,, 2013.
  12. J. Cigler, Some notes on q-Gould polynomials, 2013; PDF
  13. J. Cigler, Some remarks on lattice paths in strips along the x-axis;, 2014.
  14. J. Cigler, Some results and conjectures about a class of q-polynomials with simple moments, 2014;
  15. Johann Cigler, Some elementary observations on Narayana polynomials and related topics, Preprint 2016;
  16. Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017. (A002620, A005993, A005994, A005995, A034851, A034852, A034877, A102526, A159916)
  17. Johann Cigler, A curious class of Hankel determinants, arXiv:1803.05164 [math.CO], 2018. (A000788, A104977)
  18. Johann Cigler, Some Pascal-like triangles, 2018. PDF (A034877, A034951, A034952, A159916)
  19. Johann Cigler, Some remarks on generalized Fibonacci and Lucas polynomials, arXiv:1912.06651 [math.CO], 2019. (A00930, A001609)
  20. Johann Cigler, Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020. (A000108, A000110, A000957, A000984, A001006, A001850, A002212, A002426, A005043, A006318)
  21. Johann Cigler, Some remarks on the power product expansion of the q-exponential series, arXiv:2006.06242 [math.CO], 2020. (A006973, A067911, A178112)
  22. M. H. Cilasun, An Analytical Approach to Exponent-Restricted Multiple Counting Sequences, arXiv preprint arXiv:1412.3265, 2014
  23. M. H. Cilasun, Generalized Multiple Counting Jacobsthal Sequences of Fermat Pseudoprimes, Journal of Integer Sequences, Vol. 19, 2016, #16.2.3.
  24. Javier Cilleruelo and Florian Luca, On the sum of the first n primes, Q. J. Math., 59:4 (2008), 14 pp.
  25. Richard Cimler, Dalibor Cimr, Jitka Kuhnova, Hana Tomaskova, Novel Effective Algorithm for Synchronization Problem in Directed Graph, Conference on Computational Collective Intelligence Technologies and Applications, ICCCI 2017: Computational Collective Intelligence, pp. 528-537.
  26. Z. Cinkir, Effective Resistances, Kirchhoff index and Admissible Invariants of Ladder Graphs, arXiv preprint arXiv:1503.06353, 2015
  27. Zubeyir Cinkir, Effective Resistances and Kirchhoff index of Prism Graphs, arXiv:1704.03429 [math.CO], 2017.
  28. A. Cintrón-Arias, A. Godbole, A decade of undergraduate research for all East Tennessee State University mathematics majors, Involve, a Journal of Mathematics, 2014, Vol. 7:3 (2014).
  29. Laura Ciobanu and Alexander Kolpakov, Free subgroups of free products and combinatorial hypermaps, arXiv:1708.03842 [math.CO], 2017.
  30. Laura Ciobanu and Alexander Kolpakov, Three-dimensional maps and subgroup growth, arXiv:1712.01418 [math.GR], 2017.
  31. Lapo Cioni and Luca Ferrari, Enumerative Results on the Schröder Pattern Poset, In: Dennunzio A., Formenti E., Manzoni L., Porreca A. (eds) Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, Lecture Notes in Computer Science, vol 10248. doi:10.1007/978-3-319-58631-1_5
  32. Barry Cipra, doi:10.1126/science.327.5968.943 What comes next?, Science vol. 327 no. 5968 (19 Feb 2010) p 943.
  33. Barry Cipra, Factor Subtractor, in "Barrycades and Septoku: Papers in Honor of Martin Gardner and Tom Rogers", ed. Thane Plambeck and Tomas Rokicki, MAA Press, 2020, pp. 59-62.
  34. Octavian Cira, Smarandache's Conjecture on Consecutive Primes, International J.Math. Combin. Vol. 4 (2014), 69-91;
  35. O. Cira, F. Smarandache, Solving Diophantine Equations, EuropaNova Publishers, Bruxelles, 2014.
  36. O. Cira, F. Smarandache, Luhn prime numbers, 2014;
  37. Mircea I. Cirnu, Determinantal formulas for sum of generalized arithmetic-geometric series, Boletin de la Asociacion Matematica Venezolana, Vol. XVIII, No. 1 (2011), p. 13;
  38. Bruno Cisneros, Carlos Segovia, An approximation for the number of subgroups. arXiv:1805.04633 [math.GT], 2018. (A007581)
  39. A. Claesson, Generalized Pattern Avoidance, FPSAC01, European Journal of Combinatorics 22 (2001), 961-971, doi:10.1006/eujc.2001.0515. (PDF)
  40. Anders Claesson, Mark Dukes and Martina Kubitzke, Partition and composition matrices, arXiv:1006.1312.
  41. Claesson, Anders; Jelínek, Vít; Jelínková, Eva; Kitaev, Sergey Pattern avoidance in partial permutations. Electron. J. Combin. 18 (2011), no. 1, Paper 25, 41 pp.
  42. A. Claesson, S. Kitaev and A. de Mier, An involution on bicubic maps and beta(0,1)-trees, arXiv preprint arXiv:1210.3219, 2012
  43. Anders Claesson, Sergey Kitaev, Kari Ragnarsson et al., Boolean complexes for Ferrers graphs (2008); arXiv:0808.2307
  44. Anders Claesson and Svante Linusson, "n! matchings, n! posets", Proc. Amer. Math. Soc. 139 (2011), 435-449; doi:10.1090/S0002-9939-2010-10678-0.
  45. Anders Claesson and Toufik Mansour, Permutations avoiding a pair of generalized patterns of the form x-yz or xy-z (2001), arXiv:math/0107044.
  46. A. Claesson and T. Mansour, Counting occurrences of a pattern of type (1,2) or (2,1) in permutations, Advances in Applied Mathematics 29 (2002) 293-310 doi:10.1016/S0196-8858(02)00012-X.
  47. A. Claesson and T. Mansour, Enumerating Permutations Avoiding a Pair of Babson-Steingrímsson Patterns, (ps, pdf) Ars Combin. 77 (2005), 17-31.
  48. A. Claesson and T. K. Petersen, Conway's Napkin Problem, American Mathematical Monthly, 114 (No. 3, 2007), 217-231.
  49. Daniel T. Clancy and Steven J. Kifowit, A Closer Look at Bobo's Sequence, College Math. J., 45 (2014), 199-206.
  50. James A. Clapperton, Peter J. Larcombe, Eric J. Fennessey and Paul Levrie, A class of auto-identities for Catalan polynomials and Padé approximation, Congressus Numerantium, 189 (2008), 77-95.
  51. Brad Clardy, Properties of symmetric primes with implications for primality testing for extremely large numbers, DIMACS Workshop on The Mathematics of Post-Quantum Cryptography, January 12 - 16, 2015; ("If it weren't for the OEIS [this work] would not have been possible.")
  52. Lieven Clarisse, Sibasish Ghosh, Simone Severini et al., Entangling Power of Permutations (2005), arXiv:quant-ph/0502040.
  53. Gregory Clark, Joshua Cooper, A Harary-Sachs Theorem for Hypergraphs, arXiv:1812.00468 [math.CO], 2018. (A320648, A320653)
  54. Jacob North Clark, Stephen Montgomery-Smith, Shapley-like values without symmetry, arXiv:1809.07747 [econ.TH], 2018. (A000372, A007153)
  55. Lane Clark, "An Asymptotic Expansion for the Catalan-Larcombe-French Sequence", J. Integer Sequences, Volume 7, 2004, Article 04.2.1.
  56. Sean Clark, Anton Preslicka, Josh Schwartz and Radoslav Zlatev, Some combinatorial conjectures on a family of toric ideals: A report from the MSRI 2011 Commutative Algebra graduate workshop.
  57. Timothy B.P. Clark, Adrian Del Maestro, arXiv:1506.02048, Moments of the inverse participation ratio for the Laplacian on finite regular graphs, arXiv preprint, 2015. (A002851)
  58. Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, to appear in Involve;
  59. W. Edwin Clark, Mohamed Elhamdadi, Xiang-dong Hou, Masahico Saito and Timothy Yeatman, Connected Quandles Associated with Pointed Abelian Groups, Arxiv preprint arXiv:1107.5777, 2011
  60. Clark, W. Edwin; Elhamdadi, Mohamed; Saito, Masahico; Yeatman, Timothy Quandle colorings of knots and applications. J. Knot Theory Ramifications 23 (2014), no. 6, 1450035, 29 pp.
  61. W. Edwin Clark and Xiang-dong Hou, Galkin Quandles, Pointed Abelian groups and sequence A000712, arXiv:1108.2215
  62. Robert Clausecker, The Quality of Heuristic Functions for IDA*, Zuse Institute Berlin (2020). PDF (A090031)
  63. Michael Clausen and Paul Hühne, Linear Time Fourier Transforms of Sn-k-invariant Functions on the Symmetric Group Sn, ISSAC '17 Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, p. 101-108. doi:10.1145/3087604.3087628
  64. J. C. Claussen, doi:10.1063/1.2939398 Time evolution of the rule 150 cellular automaton activity from a Fibonacci iteration, J. Math. Phys 49 (2008)
  65. Sean Cleary, M Fischer, RC Griffiths, R Sainudiin, Some distributions on finite rooted binary trees, UCDMS Research Report NO. UCDMS2015/2, School of Mathematics and Statistics, University of Canterbury, Christchurch, NZ, 2015;
  66. Sean Cleary, Roland Maio, Counting difficult tree pairs with respect to the rotation distance problem, arXiv:2001.06407 [cs.DS], 2020. (A000207)
  67. Julien Clément, Antoine Genitrini, Binary Decision Diagrams: from Tree Compaction to Sampling, arXiv:1907.06743 [cs.DS], 2019. (A028361, A131791)
  68. Kieran Clenaghan, In Praise of Sequence (Co-)Algebra and its implementation in Haskell, arXiv:1812.05878 [math.CO], 2018. ``The encyclopaedia of integer sequences has hundreds of thousands of sequences. The sequences we have mentioned can be found using the OEIS search facility. It will be noticed that many of the sequences are accompanied by generating code written in various languages, including Haskell.’’
  69. Clift, Neill Michael Calculating optimal addition chains. Computing 91 (2011), no. 3, 265-284.
  70. Benoit Cloitre, Chemins dans un tableau arithmetique, 2007.
  71. B. Cloitre, arXiv:1107.0812 A tauberian approach to RH, 2011
  72. B. Cloitre, On the fractal behavior of primes, 2011;
  73. Benoit Cloitre, N. J. A. Sloane and Matthew J. Vandermast, "Numerical Analogues of Aronson's Sequence", J. Integer Sequences, Volume 6, 2003, Article 03.2.2.
  74. Trevor Clokie, Thomas F. Lidbetter, Antonio Molina Lovett, Jeffrey Shallit, Leon Witzman, Computational Aspects of Sturdy and Flimsy Numbers, arXiv:2002.02731 [cs.DS], 2020. (A005360, A086342, A125121, A143027, A143069, A181862, A181863, A330696)
  75. C Cobeli, M Prunescu, A Zaharescu, A growth model based on the arithmetic Z-game, arXiv preprint arXiv:1511.04315, 2015
  76. C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11, 2014.
  77. Cristian Cobeli, Alexandru Zaharescu, A bias parity question for Sturmian words, arXiv:1811.06509 [math.NT], 2018. (A003849)
  78. S. Cockburn and J. Lesperance, Deranged socks, Mathematics Magazine, 86 (2013), 97-109.
  79. Cockburni, Sally; Song, Yonghyun The homomorphism poset of K2,n. Australas. J. Combin. 57 (2013), 79-108.
  80. P. Codara, O. M. D'Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700, 2013. Also Codara, Pietro; D'Antona, Ottavio M.; Hell, Pavol. A simple combinatorial interpretation of certain generalized Bell and Stirling numbers. Discrete Math. 318 (2014), 53--57. MR3141626.
  81. Pietro Codara, Ottavio M. D'Antona and Vincenzo Marra, Best Approximation of Ruspini Partitions in Gˆdel Logic, in Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Computer Science, Volume 4724/2007, Springer-Verlag.
  82. Pietro Codara, Ottavio M. D'Antona and Vincenzo Marra, An analysis of Ruspini partitions in Gˆdel logic, International Journal of Approximate Reasoning, Volume 50, Issue 6, June 2009, Pages 825-836.
  83. Pietro Codara, Ottavio M. D'Antona, Francesco Marigo, Corrado Monti, arXiv:1307.1348, Making simple proofs simpler
  84. M. Codish, L. Cruz-Filipe, P. Schneider-Kamp, The Quest for Optimal Sorting Networks: Efficient Generation of Two-Layer Prefixes, arXiv preprint arXiv:1404.0948, 2014
  85. Michael Codish, Thorsten Ehlers, Graeme Gange, Avraham Itzhakov, Peter J. Stuckey, Breaking Symmetries with Lex Implications, International Symposium on Functional and Logic Programming (FLOPS 2018): Functional and Logic Programming, Springer, Cham, 182-197. doi:10.1007/978-3-319-90686-7_12
  86. M Codish, M Frank, A Itzhakov, A Mille, Computing the Ramsey Number R (4, 3, 3) using Abstraction and Symmetry breaking, preprint arXiv:1510.08266, 2015
  87. Michael Codish, G Gange, A Itzhakov, PJ Stuckey, Breaking Symmetries in Graphs: The Nauty Way, Preprint 2016;
  88. Michael Codish, Alice Miller, Patrick Prosser and Peter Stuckey, Breaking Symmetries in Graph Representation. International Joint Conference on Artificial Intelligence (IJCAI 2013). Beijing, China, August 2013. To appear.
  89. Victor Codocedo, Guillaume Bosc, Mehdi Kaytoue, Jean-François Boulicaut, Amedeo Napoli, A Proposition for Sequence Mining Using Pattern Structures, In: Bertet K., Borchmann D., Cellier P., Ferré S. (eds) Formal Concept Analysis. ICFCA 2017. Lecture Notes in Computer Science, vol 10308. doi:10.1007/978-3-319-59271-8_7
  90. Mark W. Coffey, Reductions of particular hypergeometric functions 3F2 (a, a+1/3, a+2/3; p/3, q/3; +-1), arXiv preprint arXiv:1506.09160, 2015
  91. M. W. Coffey, V. de Angelis, A. Dixit, V. H. Moll, et al., The Zagier polynomials. Part II: Arithmetic properties of coefficients, PDF, 2013.
  92. Mark W. Coffey, James L. Hindmarsh, Matthew C. Lettington, John Pryce, On Higher Dimensional Interlacing Fibonacci Sequences, Continued Fractions and Chebyshev Polynomials, arXiv preprint arXiv:1502.03085, 2015.
  93. MW Coffey, MC Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv preprint arXiv:1510.05402, 2015
  94. Mark W. Coffey and Matthew C. Lettington, Binomial Polynomials mimicking Riemann's Zeta Function, arXiv:1703.09251 [math.NT], 2017.
  95. A. M. Cohen, Communicating mathematics across the web, pp. 283-300 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
  96. A. M. Cohen, H. Cuypers, E. Reinaldo Barreiro and H. Sterk, Interactive Mathematical Documents on the Web, to appear in Proceedings of Dagstuhl Conference.
  97. D. Cohen, Machine Head, New Scientist, 24 Feb 2001, Vol. 169, Number 2279, pp. 26-29. (Article about artificial intelligence that mentions the database.)
  98. Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
  99. Emma Cohen, PROBLEMS IN CATALAN MIXING AND MATCHINGS IN REGULAR HYPERGRAPHS, PhD Dissertation, Math. Dept., Georgia Tech., Dec 2016;
  100. G. L. Cohen and D. E. Iannucci, "Derived Sequences", J. Integer Sequences, Volume 6, 2003, Article 03.1.1.
  101. Gerard Cohen and Jean-Pierre Flori, On a generalized combinatorial conjecture involving addition mod 2^k-1, Cryptology eprint archive 2011/400, doi:10.1504/IJICOT.2017.083831
  102. Jonathan D. Cohen, Concepts and Algorithms for Polygonal Simplification, SIGGRAPH 99 Course Tutorial #20: Interactive Walkthroughs of Large Geometric Datasets. pp. C1-C34. 1999. also in SIGGRAPH 2000 Course Tutorial.
  103. Moshe Cohen, The Jones polynomials of 3-bridge knots via Chebyshev knots and billiard table diagrams, arXiv preprint arXiv:1409.6614, 2014
  104. M. Cohen and M. Teicher, Kauffman's clock lattice as a graph of perfect matchings: a formula for its height, PDF 2012. Also Electronic Journal of Combinatorics, 21 (2014) <a href=" P4.31]
  105. C. Coker, A family of eigensequences, Discrete Math., 282 (2004), 249-250.
  106. Coker, Curtis, Enumerating a class of lattice paths. Discrete Math. 271 (2003), no. 1-3, 13-28.
  107. S. Cokus, Summing Sums Symbolically: How Computers Revolutionized the Field of Combinatorial Identities, ACMS Seminar, Winter Quarter 2001.
  108. Emma Colaric, Ryan DeMuse, Jeremy L. Martin, Mei Yin, Interval parking functions, arXiv:2006.09321 [math.CO], 2020. (A002538, A067318, A145080, A145081)
  109. Micah Spencer Coleman, Asymptotic enumeration in pattern avoidance and in the theory of set partitions and asymptotic uniformity. Ph. D. Dissertation, University of Florida (2008). PDF (A088532)
  110. Vincent E. Coll, Andrew W. Mayers, Nick W. Mayers, Statistics on integer partitions arising from seaweed algebras, arXiv:1809.09271 [math.CO], 2018. (A300574)
  111. C. S. Collberg and T. A. Proebsting, AlgoVista - A Search Engine for Computer Scientists, Arizona Computer Science, Technical Report, 2000.
  112. C. S. Collberg and T. A. Proebsting, Problem Classification using Program Checking, Fun with Algorithms 2, May 2001.
  113. Collberg, Christian S.; and Proebsting, Todd A., Problem identification using program checking. Discrete Appl. Math. 144 (2004), no. 3, 270-280.
  114. A. Collins et al., Binary words, n-color compositions and ..., Fib. Quarterly, 51 (2013), 130-136.
  116. G. E. Collins and W. Krandick, On the computing time of the continued fractions method, Journal of Symbolic Computation, Volume 47, Issue 11, November 2012, Pages 1372-1412.
  117. Karen L. Collins, Ann N. Trenk, Finding Balance: Split Graphs and Related Classes, arXiv:1706.03092 [math.CO], June 2017.
  118. Nick Collins, LIVEDOG, INC.: Hard Science and A History of Mathematics, The 25th International Conference on Auditory Display (ICAD 2019), Northumbria University. PDF A fantastic source for novel ideas for sequence data is the Online Encyclopedia of Integer Sequences.
  119. Laura Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv preprint arXiv:1604.00803, 2016.
  120. Laura Colmenarejo, Rosa Orellana, Franco Saliola, Anne Schilling, Mike Zabrocki, An insertion algorithm on multiset partitions with applications to diagram algebras, arXiv:1905.02071 [math.CO], 2019. (A000110, A020557)
  121. P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010),
  122. Pierre Colomb, Alexis Irlande, Olivier Raynaud and Yoan Renaud, About the Recursive Decomposition of the lattice of co-Moore Families, Probably the following is essentially the same paper: P. Colomb, A. Irlande, O. Raynaud and Y. Renaud, Recursive decomposition and bounds of the lattice of Moore co-families, Annals of Mathematics and Artificial Intelligence, February 2013, Volume 67, Issue 2, pp 109-122.
  123. P. Colomb, A. Irlande, O. Raynaud, Y. Renaud, Recursive decomposition tree of a Moore co-family and closure algorithm, Annals of Mathematics and Artificial Intelligence, 2013, doi:10.1007/s10472-013-9362-x.
  124. Simon Colton, "Refactorable Numbers - A Machine Invention", J. Integer Sequences, Volume 2, 1999, Article 99.1.2.
  125. S. Colton, Theory Formation Applied to Learning, Discovery and Problem Solving, presented at Machine Intelligence 17, Bury St. Edmunds, July 2000.
  126. S. Colton, An Application-based Comparison of Automated Theory Formation and Inductive Logic Programming, Electronic Transactions on Artificial Intelligence, Vol. 4 (2000), Section B, pp. 97-117.
  127. S. Colton, Automated Theory Formation Applied to Four Learning Tasks, Linkoping Electronic Articles in Computer and Information Science, Vol. 5 (2000): nr 38.
  128. S. Colton, Automated Theorem Discovery: A Future Direction for Theorem Provers, Proceedings of the IJCAR workshop on Future Directions in Automated Reasoning, Siena, Italy, 2001.
  129. S. Colton, Mathematics - a new domain for datamining?, Proc IJCAI-01, Seattle, 2001
  130. Colton, Simon, Automated conjecture making in number theory using HR, Otter and Maple. J. Symbolic Comput. 39 (2005), no. 5, 593-615.
  131. S. Colton, A. Bundy and T. Walsh, HR - A system for machine discovery in finite algebra, Proceedings of the machine discovery workshop, European Conference on Artificial Intelligence, 1998. (postscript)
  132. S. Colton, A. Bundy and T. Walsh, Automated Discovery in Pure Mathematics, Proceedings of the ECAI-98 workshop on machine discovery, 1998.
  133. S. Colton, A. Bundy and T. Walsh, Automatic Concept Formation in Pure Mathematics. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999. (postscript)
  134. S. Colton, A. Bundy and T. Walsh, On the Notion of Interestingness in Automated Mathematical Discovery, to appear in the Special Issue of the International Journal of Human Computer Studies, 2000.
  135. S. Colton, A. Bundy and T. Walsh, Automatic Invention of Integer Sequences, in Proceedings, Seventeenth National Conference on Artificial Intelligence (Austin, Texas, July 30 - June 5, 2000), AAAI Press, 2000, to appear. [Winner of prize paper award] (postscript)
  136. S. Colton, A. Bundy and T. Walsh, Automatic identification of mathematical concepts, Proc ICML-2000, Stanford, CA, 2000. PDF
  137. S. Colton and L. Dennis, The NumbersWithNames Program, 7th International Symposium on Artificial Intelligence and Mathematics, 2002.
  138. S. Colton, S. Muggleton. Mathematical applications of inductive logic programming. Math. Learn. 64 (2006) 25-64 doi:10.1007/s10994-006-8259-x
  139. S. Colton and G. Steel, Artificial Intelligence and Scientific Creativity , Quarterly Journal of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour, Volume 102, Summer/Autumn 1999.
  140. S. Colton, D. Wagner, Using formal concept analysis in mathematical discovery, LNCS 4573 (2007) 205-220 doi:10.1007/978-3-540-73086-6_18
  141. Marius Coman, The Math Encyclopedia of Smarandache Type Notions, Vol. 1, Number Theory, 2013 Education Publishing, Columbus, OH, 2013, 134 pages. [Note: this URL does not contain a typo - it really is, NOT!]
  142. Marius Coman, Conjectures on types of primes and Fermat pseudoprimes, many based on Smarandache function [Note: this URL does not contain a typo - it really is, NOT!]
  143. Marius Coman, "Conjectures on Primes and Fermat Pseudoprimes, Many Based on Smarandache Function", Education Publishing, Columbus, Ohio, 2014.
  144. Marius Coman, SEQUENCES OF INTEGERS, CONJECTURES AND NEW ARITHMETICAL TOOLS, Education Publishing, Columbus, Ohio, 2015;
  145. M. Coman, Ten prime-generating quadratic polynomials, Preprint 2015;
  146. Marius Coman, Conjecture that states that a Mersenne number with odd exponent is either prime either divisible by a 2-Poulet number, 2015;
  147. M. Coman, On the special relation between the numbers of the form 505+ 1008k and the squares of primes, 2015;
  148. L. Comtet, Advanced Combinatorics, Reidel, 1974.
  149. G. Conant, Magmas and Magog Triangles,, 2014.
  150. Aldo Conca, Hans-Christian Herbig, Srikanth B. Iyengar, Koszul property for the moment map of some classical representations, arXiv:1705.02688, [math.CA], 2017, also Collectanea Mathematica (2018) 69.3, 337–357. doi:10.1007/s13348-018-0226-x (A000108)
  151. Josep Conde, Mirka Miller, Josep M. Miret, Kumar Saurav, On the Nonexistence of Almost Moore Digraphs of Degree Four and Five, Mathematics in Computer Science (2015) p 1-5.
  152. Marston Conder, S Du, R Nedela, M Skoviera, Regular maps with nilpotent automorphism group, Journal of Algebraic Combinatorics, December 2016, Volume 44, Issue 4, pp 863–874; doi:10.1007/s10801-016-0692-8
  153. Marston Conder, George Havas and M. F. Newman, On one-relator quotients of the modular group, in Groups St Andrews 2009 in Bath (proceedings), vol. 1, London Math. Society Lecture Note Series, No. 387, Cambridge University Press, pp. 183-197.
  154. Marston Conder, Tomaž Pisanski, Arjana Žitnik, Vertex-transitive graphs and their arc-types, preprint arXiv:1505.02029, 2015. (A002513)
  155. D. Condon, S. Coskey, L. Serafin, C. Stockdale, On generalizations of separating and splitting families, arXiv preprint arXiv:1412.4683, 2014
  156. A. Conflitti, C. M. Da Fonseca and R. Mamede, doi:10.1016/j.laa.2011.07.043 The maximal length of a chain ... Lin. Algebra Applic. (2011)
  157. Alessandro Conflitti, C. M. da Fonseca and Ricardo Mamede, On the Largest Size of an Antichain in the Bruhat Order for A(2k,k), ORDER, 2011, doi:10.1007/s11083-011-9241-1
  158. Alessandro Conflitti, C. M. Da Fonseca and Ricardo Mamede, The maximal length of a chain in the Bruhat order for a class of binary matrices,
  159. ALESSANDRO CONFLITTI, C. M. DA FONSECA AND RICARDO MAMEDE, On the largest size of an antichain in the Bruhat order for A(2k, k),
  160. L. Connell, M. Levine, B. Mathes, J. Sukiennik, Toeplitz Transforms of Fibonacci Sequences, Preprint, 2015;
  161. Robert Connelly, Maurice Pierre, Maximally Dense Disc Packings on the Plane, arXiv:1907.03652 [math.MG], 2019. (A086759)
  162. Keith Conrad, When are all groups of order n cyclic?, University of Connecticut, 2019. PDF (A003277)
  163. Keith Conrad, Square patterns and infinitude of primes, University of Connecticut, 2019. PDF (A000043, A050414, A057195, A057196, A057732, A059242, A059608, A059609, A059610)
  164. Keith Conrad, The infinitude of the primes, University of Connecticut, 2020. PDF (A000945)
  165. Matthew M. Conroy, "A Sequence Related to a Conjecture of Schinzel", J. Integer Sequences, Volume 4, 2001, Article 01.1.7.
  166. Matthew M. Conroy, Travis Scholl, Stephanie Anderson, Shujing Lyu, Daria Micovic, WXML Final Report: OEIS/Wikipedia Task Force, University of Washington, 2016. [1]
  167. Sergio Consoli, Jan Korst, Gijs Geleijnse, Steffen Pauws, On the minimum quartet tree cost problem, arXiv:1807.00566 [cs.DM], 2018. (A000672)
  168. Sergio Consoli, Jan Korst, Gijs Geleijnse, Steffen Pauws, An exact algorithm for the minimum quartet tree cost problem, 4OR-Q J Oper Res (2018), 1–25. doi:10.1007/s10288-018-0394-2
  169. Sylvain Contassot-Vivier and Jean-François Couchot, Canonical Form of Gray Codes in N-cubes, In: Dennunzio A., Formenti E., Manzoni L., Porreca A. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2017. Lecture Notes in Computer Science, vol 10248. doi:10.1007/978-3-319-58631-1_6
  170. Pierluigi Contucci, Emanuele Panizzi, Federico Ricci-Tersenghi, and Alina Sîrbu, A new dimension for democracy: egalitarianism in the rank aggregation problem, Arxiv preprint arXiv:1406.7642, 2014.
  171. Pierluigi Contucci, Emanuele Panizzi, Federico Ricci-Tersenghi & Alina Sîrbu, Egalitarianism in the rank aggregation problem: a new dimension for democracy, preprint. (A000670)
  172. Andrew R Conway, The design of efficient dynamic programming and transfer matrix enumeration algorithms, Journal of Physics A: Mathematical and Theoretical, 2 August 2017. doi:10.1088/1751-8121/aa8120
  173. Andrew R. Conway, Anthony J. Guttmann, Paul Zinn-Justin, 1324-avoiding permutations revisited, arXiv:1709.01248 [math.CO], 2017
  174. J. H. Conway, "On Happy Factorizations", J. Integer Sequences, Volume 1, 1998, Article 98.1.1.
  175. J. H. Conway and T. Hsu, Some Very Interesting Sequences, in T. Shubin, D. F. Hayes, and G. Alexanderson (eds.), Expeditions in Mathematics, MAA Spectrum series, Washington, DC, 2011, chapter 6, pp. 75-86. See page 78. Also <a href="">Some Very Interesting Sequences</a>, 2006, p. 4.
  176. J. H. Conway, E. M. Rains, N. J. A. Sloane, On the existence of similar sublattices, arXiv:math/0207177
  177. J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389.
  178. Andrew Cook, Luca Viganò, A Game Of Drones: Extending the Dolev-Yao Attacker Model With Movement, Proceedings of the 6th Workshop on Hot Issues in Security Principles and Trust (HotSpot 2020): Affiliated with Euro S&P 2020, IEEE Computer Science Press, Genova, Italy (2020). PDF (A250001)
  179. C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
  180. C. K. Cook et al., Higher-order Boustrophedon transforms ..., Fib. Q., 55 (No. 3, 2017), 201-208.
  181. David Cook II, Nauty in Macaulay2, arXiv:1010.6194 [math.CO]
  182. David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140, 2013
  183. M. Cook and M. Kleber, arXiv:math.CO/0002220 Tournament sequences and Meeussen sequences, Electronic Journal of Combinatorics, Vol. 7(1) 2000, article #R44.
  184. John Paul Cook, Dov Zazkis, A Contradiction in How Introductory Textbooks Approach Matrix Multiplication, IMAGE 59 (Fall 2017), page 4. PDF "Doron Zeilberger wrote to tell me that he submitted a special case of our result to Neil Sloane. The number of singular values of a generic n × n × n tensor is now in the OEIS"
  185. Jane Ivy Coons, Seth Sullivant, The Cavender-Farris-Neyman Model with a Molecular Clock. arXiv:1805.04175 [math.AG], 2018. (A000111)
  186. Jane Ivy Coons, Seth Sullivant, The h*-polynomial of the order polytope of the zig-zag poset, arXiv:1901.07443 [math.CO], 2019. (A000111, A050446, A205497)
  187. M. Coons, J. Shallit, doi:10.1016/j.disc.2011.07.029 A pattern sequence approach to Stern's sequence, Disc. Math. 311 (22) (2011) 2630-2633
  188. Michael Coons, Paul Vrbik. An Irrationality Measure for Regular Paperfolding Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.6
  189. Alec S. Cooper, Oleg Pikhurko, John R. Schmitt, Gregory S. Warrington, Martin Gardner's minimum no-3-in-a-line problem, arXiv:1206.5350 [math.CO], 2012.
  190. Curtis Cooper, The Chinese Ring puzzle, the Crazy Elephant Dance puzzle, the b-Spinout puzzle, and Gray codes, The Mathematical Gazette (2019) Vol. 103, Issue 558, 431-441. doi:10.1017/mag.2019.103
  191. Curtis Cooper, Steven Miller, Peter J. C. Moses, Murat Sahin, Thotsaporn Thanatipanonda, On identities of Ruggles, Hradam, Howard, and Young, The Fibonacci Quarterly, 55.5 (2017), pp 42-65. PDF, see also
  192. C. Cooper and M. Wiemann, Divisibility of an F-L Type Convolution, Applications of Fibonacci Numbers, Volume 9.
  193. Joseph E. Cooper III, A recurrence for an expression involving double factorials, arXiv:1510.00399 [math.CO], 2015.
  194. Joshua Cooper and Aaron Dutle, Greedy Galois Games, Amer. Math. Mnthly, 120 (2013), 441-451. arXiv:1110.1137
  195. Joshua N. Cooper and Alexander W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors;, 2012. arXiv:1409.2909, and <a href="">J. Int. Seq. 16 (2013) #13.1.8</a>
  196. Joshua Cooper and Danny Rorabaugh, Asymptotic Density of Zimin Words, arXiv preprint arXiv:1510.03917
  197. Shaun Cooper, Level 6: Ramanujan's Cubic Continued Fraction, In: Ramanujan's Theta Functions, 2017. doi:10.1007/978-3-319-56172-1_7
  198. Shaun Cooper, J Guillera, A Straub, W Zudilin, Crouching AGM, Hidden Modularity, arXiv preprint arXiv:1604.01106, 2016
  199. Shaun Cooper, J. G. Wan and W Zudilin, Holonomic alchemy and series for 1/pi, arXiv preprint arXiv:1512.04608, 2015
  200. Shaun Cooper, Dongxi Ye, Level 14 AND 15 Analogues of Ramanujan's Elliptic Functions to Alternative Bases, preprint. (A028887)
  201. J. Copeland and J. Haemer, Odds and Ends, SunExpert, May 1999, pp. 50-53.
  202. J. Copeland and J. Haemer, High-School Algebra, Backwards, SunExpert, Feb 2001, pp. 34-37.
  203. Tom Copeland, Lagrange a la Lah, at
  204. Tom Copeland, Mathemagical Forests, at
  205. R. Coquereaux, Global dimensions for Lie groups at level k and their conformally exceptional quantum subgroups. Rev. Un. Matem. Arg. 51 (2) (2010) 17-42 Dialnet, arXiv:1003.2589
  206. R. Coquereaux, Quantum McKay correspondence and global dimensions for fusion and module-categories associated with Lie groups, arXiv preprint arXiv:1209.6621, 2012
  207. R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015
  208. Cristina B. Corcino, Roberto B. Corcino, István Mező, Continued fraction expansions for the Lambert W function, Aequationes mathematicae (2018), 1-14. doi:10.1007/s00010-018-0559-2
  209. Roberto B. Corcino, Jay M. Ontolan, Gladys Jane Rama, Hankel Transform of the Second Form (q, r)-Dowling Numbers, European Journal of Pure and Applied Mathematics (2019) Vol. 12, No. 4, 1676-1688. doi:10.29020/nybg.ejpam.v12i4.3583
  210. R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694, 2013.
  211. Roberto B. Corcino, Mary Joy R. Latayada, Mary Ann Ritzell P. Vega, Hankel Transform of (q, r)-Dowling Numbers, European Journal of Pure and Applied Mathematics (2019) Vol. 12, No. 2, 279-293. doi:10.29020/nybg.ejpam.v12i2.3406
  212. Christophe Cordero, Enumerative Combinatorics of Prographs, Proceedings of the 30th Conference on Formal Power Series and Algebraic Combinatorics (Hanover), Séminaire Lotharingien de Combinatoire 80B (2018) Article #58. PDF "We also proved thanks to computer experiments and the OEIS [7] that prographs made of only one sort of operator with two inputs and three outputs can model the biological notion of tandem duplication trees"
  213. Katherine Cordwell, Alyssa Epstein, Anand Hemmady, Steven J. Miller, Eyvindur A. Palsson, Aaditya Sharma, Stefan Steinerberger, Yen Nhi Truong Vu, On algorithms to calculate integer complexity, arXiv:1706.08424 [math.NT], 2017. Also in Integers (2019) 19, Article #A12. Abstract, #A12 (A005245)
  214. Robert Cori, Indecomposable permutations, hypermaps and labeled Dyck paths, Journal of Combinatorial Theory, Series A, In Press, Corrected Proof, Available online 21 May 2009.
  215. Robert Cori, Enrica Duchi, Veronica Guerrini, Simone Rinaldi, Families of Parking Functions Counted by the Schröder and Baxter Numbers, Lattice Path Combinatorics and Applications, Developments in Mathematics (DEVM Vol. 58, 2019), Springer, Cham, 194-225. doi:10.1007/978-3-030-11102-1_10
  216. R. Cori, G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628, 2013
  217. R. Cori, G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344;
  218. Robert Cori, Gabor Hetyei, Genus one partitions, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, pp. 333-344, <hal-01207612>
  219. Robert Cori, G Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992, 2017
  220. R. M. Corless, Symbolic Computation in Nonlinear Dynamics, Proceedings of Let's Face Chaos Through Nonlinear Dynamics, Ljubljana, Slovenia, 1993; Open Syst. Inf. Dyn 3 (1995) 131 doi:10.1007/BF02228812.
  221. Robert M. Corless, N Fillion, Backward Error Analysis for Perturbation Methods, arXiv preprint arXiv:1609.01321, 2016
  222. Robert M. Corless and Steven E. Thornton, The bohemian eigenvalue project, Newsletter, ACM Communications in Computer Algebra, Volume 50 Issue 4, December 2016, p. 158-160. doi:10.1145/3055282.3055289
  223. Tomás M. Coronado, Arnau Mir, Francesc Rosselló, Gabriel Valiente, A balance index for phylogenetic trees based on quartets, arXiv:1803.01651 [q-bio.PE], 2018. (A300445)
  224. Tomás M. Coronado, Arnau Mir, Francesc Rosselló, Gabriel Valiente, A balance index for phylogenetic trees based on rooted quartets, Journal of Mathematical Biology (2019) Vol. 79, Issue 3, 1105–1148. doi:10.1007/s00285-019-01377-w
  225. Ruth Corran, Matthieu Picantin, A new Garside structure for braid groups of type (e,e,r) (2009) arXiv:0901.0645
  226. B. Correll, The density of Costas arrays and three-free permutations, in Statistical Signal Processing Workshop (SSP), 2012 IEEE, Date of Conference: 5-8 Aug. 2012, Pages 492 - 495.
  227. Bill Correll Jr, RW Ho, A Note on 3-free Permutations, arXiv preprint arXiv:1712.00105, 2017.
  228. F. Corset, M. Fouladirad, C. Paroissin, E. Remy, A parametric lifetime model for a multicomponents system with spatial interactions, Applied Stochastic Models in Business and Industry (2019) Vol. 35, Issue 2, 221-233. doi:10.1002/asmb.2449
  229. Sylvie Corteel and Pawe Hitczenko, "Generalizations of Carlitz Compositions", J. Integer Sequences, Volume 10, 2007, Article 07.8.8.
  230. Sylvie Corteel, Megan A. Martinez, Carla D. Savage, and Michael Weselcouch, Patterns in Inversion Sequences I, arXiv:1510.05434[math.CO], 2015. "We especially owe a debt of gratitude to Neil Sloane and the OEIS Foundation, Inc. Our work was greatly facilitated by the On-Line Encyclopedia of Integer Sequences".
  231. C Coscia, J DeWitt, F Yang, Y Zhang, Online and Random Domination of Graphs, arXiv preprint arXiv:1509.08876, 2015
  232. J. B. Cosgrave and K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, 118 (Nov. 2011), 812-829.
  233. J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013; doi:10.1007/s10474-013-0357-1.
  234. John B. Cosgrave and Karl Dilcher, The multiplicative orders of certain Gauss factorials, II, Preprint, 2014; Funct. Approx. Comment. Math. Volume 54, Number 1 (2016), 73-93.
  235. J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp., to appear 2016; (See paper #10).
  236. G. E. Cossali, "A Common Generating Function for Catalan Numbers and Other Integer Sequences", J. Integer Sequences, Volume 6, 2003, Article 03.1.8.
  237. Davi B. Costa, Bogdan A. Dobrescu, Patrick J. Fox, Chiral Abelian gauge theories with few fermions, arXiv:2001.11991 [hep-ph], 2020. (A053871)
  238. Patrick Costello, Ranthony A. C. Edmonds, Gaussian Amicable Pairs, Missouri J. Math. Sci. (2018) Vol. 30, Issue 2, 107-116. Abstract
  239. Miguel Couceiro, Jimmy Devillet, Every quasitrivial n-ary semigroup is reducible to a semigroup, (2019) [math]. Abstract (A292932, A292933, A308351, A308352, A308354, A308362)
  240. Miguel Couceiro, Jimmy Devillet, Jean-Luc Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017. (A000129, A002605, A048739, A163271, A293004, A293005, A293006, A293007, A292932, A292933, A292934)
  241. D. Coupier, A. Desolneux and B. Ycart, Image Denoising by Statistical Area Thresholding, Journal of Mathematical Imaging and Vision, Volume 22, Numbers 2-3 / May, 2005.
  242. Julien Courtiel, K Yeats, N Zeilberger, Connected chord diagrams and bridgeless maps, arXiv preprint arXiv:1611.04611, 2016
  243. M. A. Covington, The number of distinct alignments of two strings, (pdf, ps), Journal of Quantitative Linguistics, 2004, to appear.
  244. Robert George Cowell, A unifying framework for the modelling and analysis of STR DNA samples arising in forensic casework, arXiv:1802.09863 [stat.AP], 2018. (A000225)
  245. Simon Cowell, A Formula for the Reliability of a d-dimensional Consecutive-k-out-of-n:F System, arXiv preprint arXiv:1506.03580, 2015
  246. Robert Cowen, Improving the Kruskal-Katona Bounds for Complete Subgraphs of a Graph, The Mathematica Journal (2018) Vol. 20. doi:10.3888/tmj.20-6 (A000297, A020917)
  247. John R. Cowles and Ruben Gamboa, Verifying Sierpinski and Riesel Numbers in ACL2, Arxiv preprint arXiv:1110.4671, 2011
  248. Danielle Cox and K. McLellan, A problem on generation sets containing Fibonacci numbers, Fib. Quart., 55 (No. 2, 2017), 105-113.
  249. Darrell Cox, The 3n + 1 Problem: A Probabilistic Approach, Journal of Integer Sequences, Vol. 15 (2012), #12.5.2.
  250. D. A. Cox and J. Shurman, Geometry and number theory on clovers, Amer. Math. Monthly, 112 (2005), 682-704.
  251. Gregory E. Coxson, Enumeration and Generation of PSL Equivalence Classes for Quad-Phase Codes of Odd Length, IEEE Transactions on Aerospace and Electronic Systems (2019). doi:10.1109/TAES.2019.2923298
  252. Gregory Emmett Coxson and Jon Carmelo Russo, Enumeration and Generation of PSL Equivalence Classes for Quad-Phase Codes of Even Length, IEEE Transactions on Aerospace and Electronic Systems, Year: 2017, Volume: 53, Issue: 4, Pages: 1907 - 1915. doi:10.1109/TAES.2017.2675238 ["If this initial subsequence is tried in the query function at the OEIS, the query returns a match with sequence A225826", "The following result is from the OEIS, sequence A225826"]
  253. James Cranch, Representing and Enumerating Two-Dimensional Pasting Diagrams,, 2013.
  254. Harry Crane. (2015) Left-right arrangements, set partitions, and pattern avoidance . Australasian Journal of Combinatorics, 61(1):57-72.
  255. Harry Crane, The ubiquitous Ewens sampling formula, preprint, 2015; PDF
  256. Harry Crane, Stephen DeSalvo, Pattern Avoidance for Random Permutations, arXiv:1509.07941.
  257. H. Crane and P. McCullagh. (2015) Reversible Markov structures on divisible set partitions. Journal of Applied Probability, 52(3), to appear.
  258. Selden Crary, Factorization of the Determinant of the Gaussian-Covariance Matrix of Evenly Spaced Points Using an Inter-dimensional Multiset Duality, arXiv preprint arXiv:1406.6326, 2014
  259. Selden Crary, Richard Diehl Martinez, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017.
  260. Selden Crary, Tatiana Nizhegorodova, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ia. MINOS for IMSPE Evaluation and Optimal-IMSPE-Design Search, arXiv:1704.06250 [stat.ME], 2017.
  261. Charles Cratty, Samuel Erickson, Frehiwet Negass, Lara Pudwell, Pattern Avoidance in Double Lists, preprint. (A010854, A005843, A008585, A052905, A183897, A000032, A000325)
  262. Matthew Brendan Crawford, On the Number of Representations of One as the Sum of Unit Fractions, Master's Thesis, Virginia Polytechnic Institute and State University (2019). Abstract (A000058, A002966, A076393)
  263. Danielle Cressman, Jonathan Lin, An Nguyen, Luke Wiljanen, Generalized Action Graphs, (2020). PDF (A000108)
  264. Crilly, Tony. "A supergolden rectangle." The Mathematical Gazette 78.483 (1994): 320-325.
  265. Tony Crilly, A family of discrete spirals, The Mathematical Gazette (2020) Vol. 104, Issue 560, 215-224. doi:10.1017/mag.2020.43 (A056520)
  266. Tony Crilly and Colin R. Fletcher, The 'hitchhiker triangle' and the problem of perimeter = area, The Mathematical Gazette, Volume 99 / Issue 546 / November 2015, pp 402-415.
  267. Andrew Crites, Enumerting pattern avoidance for affine permutations, El. J. Combinat. 17 (2010) #R127
  268. Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, master’s thesis, 2018. PDF (A000252, A001788, A001809, A002884, A003787, A003788, A003793, A005329, A006116, A008302, A011785, A022166, A053846, A064767, A065128, A065498, A083906, A132186, A182176, A270880, A270881, A286331, A288253, A288853, A289540, A289544, A289545, A289946, A290516, A290974, A293844, A293845, A296548, A296605, A297892, A298399, A298561, A300915)
  269. Kristina Crona and Mengming Luo, Higher order epistasis and fitness peaks, arXiv:1708.02063 [q-bio.QM], 2017.
  270. Kristina Crona, Mengming Luo, Devin Greene, An Uncertainty Law for Microbial Evolution, Journal of Theoretical Biology (2020) Vol. 489, Article No. 110155. doi:10.1016/j.jtbi.2020.110155 (A000984)
  271. Cropper, Sebrina Ruth, "Ranking Score Vectors of Tournaments" (2011). All Graduate Reports and Creative Projects. Paper 91. Utah State University, School of Graduate Studies,
  272. S. Crowley, Some Fractal String and Hypergeometric Aspects of the Riemann Zeta Function,, 2012
  273. Stephen Crowley, A Mysterious Three Term Integer Sequence Related to a Lambert W Function Solution to a Certain Transcendental Equation
  274. S. Crowley, Mellin and Laplace Integral Transforms Related to the Harmonic Sawtooth Map and a Diversion Into The Theory Of Fractal Strings,, 2012
  275. Stephen Crowley, Two new zeta constants: fractal string, continued fraction and hypergeometric aspects of the Riemann Zeta Function, arXiv:1207.1126
  276. S. Crowley, Integral Transforms of the Harmonic Sawtooth Map, The Riemann Zeta Function, Fractal Strings, and a Finite Reflection Formula, arXiv preprint arXiv:1210.5652, 2012.
  277. Carlos Antonio Cruz López, Juan Luis François, Two alternative approaches to the solution of cyclic chains in transmutation and decay problems, Computer Physics Communications (2020) 107225. doi:10.1016/j.cpc.2020.107225
  278. Andrew C. Cullen, Simon R. Clarke, A Fast, Spectrally Accurate Homotopy Based Numerical Method For Solving Nonlinear Differential Equations, arXiv:1811.00676 [math.NA], 2018.
  279. J. Cummings, D. Kral, F. Pfender, K. Sperfeld et al., Monochromatic triangles in three-coloured graphs, Arxiv preprint arXiv:1206.1987. 2012.
  280. F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix for chaotic cavities, arXiv preprint arXiv:1412.2172, 2014
  281. FD Cunden, F Mezzadri, N Simm, P Vivo, Correlators for the Wigner-Smith time-delay matrix of chaotic cavities, arXiv preprint arXiv:1601.06690, 2016; Journal of Physics A: Mathematical and Theoretical, 49(18), 18LT01.
  282. K.K.A. Cunningham, Tom Edgar, A.G. Helminck, B.F. Jones, H. Oh, R. Schwell, and J.F. Vasquez, doi:10.1285/i15900932v34n2p23 On the Structure of Involutions and Symmetric Spaces of Dihedral Groups, Note di Matematica, Vol. 34 No. 2 (2014). See also arXiv:1205.3207, 2012.
  283. Michael Cuntz, Integral modular data and congruences (2006), arXiv:math/0611233; Journal of Algebraic Combinatorics, Volume 29, Number 3 / May, 2009.
  284. James Currie, Narad Rampersad, Growth rate of binary words avoiding xxx^R, arXiv preprint arXiv:1502.07014, 2015 JIS 18 (2015) 15.10.3
  285. J. Currie, N. Rampersad, Binary words avoiding xx^Rx and strongly unimodal sequences, arXiv preprint arXiv:1508.02964, 2015
  286. B. Curry, G. A. Wiggins and G. Hayes, Representing trees with constraints, Lloyd, J. (ed.) et al., Computational Logic- CL 2000. 1st International Conference, London, GB, July 24-28, 2000. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 1861, 315-325 (2000). Also another version. doi:10.1007/3-540-44957-4_21
  287. Eugene Curtin, Junu Lee, Andrew Lu, Sophia Sun, A modified Grassmann algebra approach to theorems on permanents and determinants, Linear Algebra and its Applications (2019) Vol. 581, 20-35. doi:10.1016/j.laa.2019.07.002
  288. T. L. Curtright, More on Rotations as Spin Matrix Polynomials, arXiv preprint arXiv:1506.04648, 2015
  289. T. L. Curtright, D. B. Fairlie, C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541, 2014
  290. T. L. Curtright, T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767, 2014.
  291. Luisa Cutillo, Giuseppe De Marco and Chiara Donnini, Networks of Financial Contagion, Advanced Dynamic Modeling of Economic and Social Systems, Studies in Computational Intelligence Volume 448, 2013, pp 31-48; doi:10.1007/978-3-642-32903-6_4.
  292. Karin Cvetko-Vah, Michael Kinyon, Jonathan Leech, Tomaž Pisanski, Regular Antilattices, arXiv:1911.02858 [math.RA], 2019. (A000005, A000012, A007425, A007426)
  293. Aleksandar Cvetkovic, Predrag Rajkovic and Milos Ivkovic, "Catalan Numbers, the Hankel Transform and Fibonacci Numbers", J. Integer Sequences, Volume 5, 2002, Article 02.1.3.
  294. Cvetkovic, Dragos; Fowler, Patrick; Rowlinson, Peter; Stevanovic, Dragan, Constructing fullerene graphs from their eigenvalues and angles. Special issue on algebraic graph theory (Edinburgh, 2001). Linear Algebra Appl. 356 (2002), 37-56.
  295. Djurdje Cvijović, Two general families of integer–valued polynomials associated with finite trigonometric sums, Journal of Mathematical Analysis and Applications (2020) Vol. 488, No. 1, 124057. doi:10.1016/j.jmaa.2020.124057
  296. Predrag Cvitanovic, Asymptotic estimates and gauge invariance, Nuclear Physics B, Volume 127, Issue 1, 22 August 1977, Pages 176-188.
  297. P. Cvitanovic', Group Theory, webbook.
  298. Éva Czabarka, Peter Dankelmann, Trevor Olsen, László A. Székely, Wiener Index and Remoteness in Triangulations and Quadrangulations, arXiv:1905.06753 [math.CO], 2019. (A001400, A014125, A131423)
  299. Eva Czabarka, Peter L. Erdos, Virginia Johnson, Anne Kupczok and Laszlo A. Szekely, Asymptotically normal distribution of some tree families relevant for phylogenetics, and of partitions without singletons, Arxiv preprint arXiv:1108.6015, 2011
  300. É. Czabarka, R. Flórez, L. Junes, Some Enumerations on Non-Decreasing Dyck Paths, The Electronic Journal of Combinatorics, 22(1), 2015, #P1.3.
  301. É. Czabarka, R. Flórez, L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
  302. Éva Czabarka, Rigoberto Flórez, Leandro Junes, José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Mathematics (2018) Vol. 341, Issue 10, 2789-2807. doi:10.1016/j.disc.2018.06.032
  303. Mariusz Czekała and Agnieszka Bukietyńska, Distribution of Inversions and the Power of the τ-Kendall's Test</a>, in J. Świątek, Z. Wilimowska, L. Borzemski, A. Grzech (eds), Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology - ISAT 2016 - Part III, pp. 175-185. doi:10.1007/978-3-319-46589-0_14
  304. Mariusz Czekała, Agnieszka Bukietyńska, Agnieszka Matylda Schlichtinger, Estimation of the Probability of Inversion in the Test of Variable Dependencies, Iterative Non-iterative Integrals in Quantum Field Theory</a>, Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology (ISAT 2018), Part III, 145-156. doi:10.1007/978-3-319-99993-7 (A008302)

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.