This site is supported by donations to The OEIS Foundation.

CiteCi

From OeisWiki
Jump to: navigation, search


"If it weren't for the OEIS [this work] would not have been possible." [Brad Clardy, 2015]

"The encyclopaedia of integer sequences has hundreds of thousands of sequences. The sequences we have mentioned can be found using the OEIS search facility. It will be noticed that many of the sequences are accompanied by generating code written in various languages, including Haskell." [Kieran Clenaghan, 2018]

"A fantastic source for novel ideas for sequence data is the Online Encyclopedia of Integer Sequences." [Nick Collins, 2019]

"We also proved thanks to computer experiments and the OEIS [7] that prographs made of only one sort of operator with two inputs and three outputs can model the biological notion of tandem duplication trees." [Christophe Cordero, 2018]

"We especially owe a debt of gratitude to Neil Sloane and the OEIS Foundation, Inc. Our work was greatly facilitated by the On-Line Encyclopedia of Integer Sequences." [Sylvie Corteel et al., 2015]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Ci to Cz.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.


References

  1. Andrejs Cibulis and Walter Trump, Domino Exclusion Problem, Baltic J. Modern Computing (2020) Vol. 8, No. 4, 496-519. doi:10.22364/bjmc.2020.8.4.02 (A280984) Then, looking at The On-Line Encyclopedia of Integer Sequences (Shepard, 2017), it was understood that this matchstick problem is equivalent to the domino exclusion problem studied earlier in (Gyárfás et al., 1988).
  2. Ferdinando Cicalese, Zsuzsanna Lipták, Massimiliano Rossi, Bubble-Flip—A new generation algorithm for prefix normal words, Theoretical Computer Science, Volume 743, 26 September 2018, Pages 38-52.
  3. Ferdinando Cicalese, Zsuzsanna Lipták, Massimiliano Rossi, On Infinite Prefix Normal Words, arXiv:1811.06273 [math.CO], 2018. (A194850, A238109, A238110)
  4. Johann Cigler, Some results and conjectures about recurrence relations for certain sequences of binomial sums (2006), arXiv:math.CO/0611189.
  5. Johann Cigler, Recurrence relations for powers of q-Fibonacci polynomials (2008); arXiv:0806.0805
  6. Johann Cigler, Some conjectures about q-Fibonacci polynomials (2008); arXiv:0805.0415
  7. Johann Cigler, Fibonacci polynomials, generalized Stirling numbers,.., arXiv:1103.2610
  8. J. Cigler, Some nice Hankel determinants. Arxiv preprint arXiv:1109.1449, 2011. See also http://homepage.univie.ac.at/johann.cigler/preprints/hankel-conjectures.pdf
  9. J. Cigler, Continued fractions associated with q-Schroeder-like numbers, PDF, 2012. Also arXiv preprint arXiv:1210.0372.
  10. J. Cigler, Hankel determinants of some polynomial sequences, PDF, 2012.
  11. J. Cigler, Some q-analogues of Fibonacci, Lucas and Chebyshev polynomials with nice moments, 2013; http://homepage.univie.ac.at/johann.cigler/preprints/cheb-survey.pdf
  12. J. Cigler, Some remarks about q-Chebyshev polynomials and q-Catalan numbers and related results, http://homepage.univie.ac.at/Johann.Cigler/preprints/chebyshev-survey.pdf, 2013.
  13. J. Cigler, Some notes on q-Gould polynomials, 2013; PDF
  14. J. Cigler, Some remarks on lattice paths in strips along the x-axis; http://homepage.univie.ac.at/johann.cigler/preprints/lattice-paths.pdf, 2014.
  15. J. Cigler, Some results and conjectures about a class of q-polynomials with simple moments, 2014; http://homepage.univie.ac.at/Johann.Cigler/preprints/q-pol.pdf
  16. Johann Cigler, Some elementary observations on Narayana polynomials and related topics, Preprint 2016; https://www.researchgate.net/profile/Johann_Cigler/publication/307864723_Some_elementary_observations_on_Narayana_polynomials_and_related_topics/links/57cfd8c308ae057987ad1819.pdf
  17. Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017. (A002620, A005993, A005994, A005995, A034851, A034852, A034877, A102526, A159916)
  18. Johann Cigler, A curious class of Hankel determinants, arXiv:1803.05164 [math.CO], 2018. (A000788, A104977)
  19. Johann Cigler, Some Pascal-like triangles, 2018. PDF (A034877, A034951, A034952, A159916)
  20. Johann Cigler, Some remarks on generalized Fibonacci and Lucas polynomials, arXiv:1912.06651 [math.CO], 2019. (A00930, A001609)
  21. Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021. (A001263, A010048, A056939, A056940, A056941, A088855, A142465, A142467, A142468, A174109)
  22. Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021). Abstract (A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109)
  23. Johann Cigler, Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020. (A000108, A000110, A000957, A000984, A001006, A001850, A002212, A002426, A005043, A006318)
  24. Johann Cigler, Some remarks on the power product expansion of the q-exponential series, arXiv:2006.06242 [math.CO], 2020. (A006973, A067911, A178112)
  25. Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022. (A000012, A000045, A000079, A000931, A001045, A005578, A011782, A016116, A017817, A017827, A017837, A017847, A028495, A030436, A050443, A061551, A087936, A087937, A099163, A182522, A306755)
  26. Johann Cigler, Some remarks about Hankel determinants which are related to Catalan-like numbers, arXiv:2404.05263 [math.CO], 2024. See p. 2. (A001006)
  27. Johann Cigler, Hankel determinants of backward shifts of powers of q, arXiv:2407.05768 [math.CO], 2024. (A114604, A348901)
  28. M. H. Cilasun, An Analytical Approach to Exponent-Restricted Multiple Counting Sequences, arXiv preprint arXiv:1412.3265, 2014
  29. M. H. Cilasun, Generalized Multiple Counting Jacobsthal Sequences of Fermat Pseudoprimes, Journal of Integer Sequences, Vol. 19, 2016, #16.2.3.
  30. Javier Cilleruelo and Florian Luca, On the sum of the first n primes, Q. J. Math., 59:4 (2008), 14 pp.
  31. Richard Cimler, Dalibor Cimr, Jitka Kuhnova, Hana Tomaskova, Novel Effective Algorithm for Synchronization Problem in Directed Graph, Conference on Computational Collective Intelligence Technologies and Applications, ICCCI 2017: Computational Collective Intelligence, pp. 528-537.
  32. Z. Cinkir, Effective Resistances, Kirchhoff index and Admissible Invariants of Ladder Graphs, arXiv preprint arXiv:1503.06353, 2015
  33. Zubeyir Cinkir, Effective Resistances and Kirchhoff index of Prism Graphs, arXiv:1704.03429 [math.CO], 2017.
  34. A. Cintrón-Arias, A. Godbole, A decade of undergraduate research for all East Tennessee State University mathematics majors, Involve, a Journal of Mathematics, 2014, Vol. 7:3 (2014).
  35. Sebastian M. Cioabă and Werner Linde, A Bridge to Advanced Mathematics: from Natural to Complex Numbers, Amer. Math. Soc. (2023) Vol. 58. Abstract (A000032 p42, A000045 p39, A000215 p63, A000217 p12, A000396 p62, A001203 p360, A001913 p186, A008404 p151, A065421 p334)
  36. Laura Ciobanu and Alexander Kolpakov, Free subgroups of free products and combinatorial hypermaps, arXiv:1708.03842 [math.CO], 2017.
  37. Laura Ciobanu and Alexander Kolpakov, Three-dimensional maps and subgroup growth, arXiv:1712.01418 [math.GR], 2017.
  38. Lapo Cioni and Luca Ferrari, Enumerative Results on the Schröder Pattern Poset, In: Dennunzio A., Formenti E., Manzoni L., Porreca A. (eds) Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, Lecture Notes in Computer Science, vol 10248. doi:10.1007/978-3-319-58631-1_5
  39. Cioni, Lapo, and Luca Ferrari. "Preimages under the Queuesort algorithm." arXiv preprint arXiv:2102.07628 (2021); Discrete Math., 344 (2021), #112561.
  40. Lapo Cioni and Luca Ferrari, Characterization and Enumeration of Preimages Under the Queuesort Algorithm, Extended Abstracts EuroComb (2021) Birkhäuser, Cham, 234-240. doi:10.1007/978-3-030-83823-2_37
  41. Lapo Cioni, Luca Ferrari, and Corentin Henriet. A direct bijection between two-stack sortable permutations and fighting fish, Euro. Conf. Comb., Graph Theory Appl. (2023) No. 12, 283-289. doi:10.5817/CZ.MUNI.EUROCOMB23-039 (A000139, A131178)
  42. Lapo Cioni, Luca Ferrari, Rebecca Smith, and (SUNY Brockport), Pop Stacks with a Bypass, arXiv:2406.16399 [cs.DM], 2024. See pp. 1-2. (A001519)
  43. Barry Cipra, doi:10.1126/science.327.5968.943 What comes next?, Science vol. 327 no. 5968 (19 Feb 2010) p 943.
  44. Barry Cipra, Factor Subtractor, in "Barrycades and Septoku: Papers in Honor of Martin Gardner and Tom Rogers", ed. Thane Plambeck and Tomas Rokicki, MAA Press, 2020, pp. 59-62.
  45. Octavian Cira, Smarandache's Conjecture on Consecutive Primes, International J.Math. Combin. Vol. 4 (2014), 69-91; http://mathcombin.com/upload/file/20150127/1422320940239094100.pdf#page=74
  46. O. Cira, F. Smarandache, Solving Diophantine Equations, EuropaNova Publishers, Bruxelles, 2014.
  47. O. Cira, F. Smarandache, Luhn prime numbers, 2014; http://www.gallup.unm.edu/~smarandache/ScArt7/CP-LuhnPrimeNumbers.pdf
  48. Mircea I. Cirnu, Determinantal formulas for sum of generalized arithmetic-geometric series, Boletin de la Asociacion Matematica Venezolana, Vol. XVIII, No. 1 (2011), p. 13; http://www.emis.de/journals/BAMV/conten/vol18/BAMV_XVIII-1_p015-028.pdf.
  49. Reinis Cirpons, James East, and James D. Mitchell, Transformation representations of diagram monoids, arXiv:2411.14693 [math.RA], 2024. (A000085, A000108, A000110, A000245, A001006, A001194, A001475, A001879, A002026, A026012, A087649)
  50. Bruno Cisneros, Carlos Segovia, An approximation for the number of subgroups. arXiv:1805.04633 [math.GT], 2018. (A007581)
  51. A. Claesson, Generalized Pattern Avoidance, FPSAC01, European Journal of Combinatorics 22 (2001), 961-971, doi:10.1006/eujc.2001.0515. (PDF)
  52. Anders Claesson, From Hertzsprung's problem to pattern-rewriting systems, University of Iceland (2020). PDF (A002464, A013999, A177249, A212432, A212433, A212580, A212581)
  53. Anders Claesson, Mark Dukes and Martina Kubitzke, Partition and composition matrices, arXiv:1006.1312.
  54. Anders Claesson, Atli Fannar Franklín, and Einar Steingrímsson, Permutations with few inversions, arXiv:2305.09457 [math.CO], 2023. (A058884, A178841)
  55. Claesson, Anders; Jelínek, Vít; Jelínková, Eva; Kitaev, Sergey Pattern avoidance in partial permutations. Electron. J. Combin. 18 (2011), no. 1, Paper 25, 41 pp.
  56. A. Claesson, S. Kitaev and A. de Mier, An involution on bicubic maps and beta(0,1)-trees, arXiv preprint arXiv:1210.3219, 2012
  57. Anders Claesson, Sergey Kitaev, Kari Ragnarsson et al., Boolean complexes for Ferrers graphs (2008); arXiv:0808.2307
  58. Anders Claesson and Svante Linusson, "n! matchings, n! posets", Proc. Amer. Math. Soc. 139 (2011), 435-449; doi:10.1090/S0002-9939-2010-10678-0.
  59. Anders Claesson and Toufik Mansour, Permutations avoiding a pair of generalized patterns of the form x-yz or xy-z (2001), arXiv:math/0107044.
  60. A. Claesson and T. Mansour, Counting occurrences of a pattern of type (1,2) or (2,1) in permutations, Advances in Applied Mathematics 29 (2002) 293-310 doi:10.1016/S0196-8858(02)00012-X.
  61. A. Claesson and T. Mansour, Enumerating Permutations Avoiding a Pair of Babson-Steingrímsson Patterns, (ps, pdf) Ars Combin. 77 (2005), 17-31.
  62. A. Claesson and T. K. Petersen, Conway's Napkin Problem, American Mathematical Monthly, 114 (No. 3, 2007), 217-231.
  63. Anders Claesson and Henning Ulfarsson, Turning cycle restrictions into mesh patterns via Foata's fundamental transformation, Univ. of Iceland (2023). PDF (A177249)
  64. Daniel T. Clancy and Steven J. Kifowit, A Closer Look at Bobo's Sequence, College Math. J., 45 (2014), 199-206.
  65. James A. Clapperton, Peter J. Larcombe, Eric J. Fennessey and Paul Levrie, A class of auto-identities for Catalan polynomials and Padé approximation, Congressus Numerantium, 189 (2008), 77-95.
  66. Brad Clardy, Properties of symmetric primes with implications for primality testing for extremely large numbers, DIMACS Workshop on The Mathematics of Post-Quantum Cryptography, January 12 - 16, 2015; http://dimacs.rutgers.edu/Workshops/Post-Quantum/abstracts.html#clardy ("If it weren't for the OEIS [this work] would not have been possible.")
  67. Lieven Clarisse, Sibasish Ghosh, Simone Severini et al., Entangling Power of Permutations (2005), arXiv:quant-ph/0502040.
  68. Gregory Clark, Joshua Cooper, A Harary-Sachs Theorem for Hypergraphs, arXiv:1812.00468 [math.CO], 2018. (A320648, A320653)
  69. Gregory J. Clark and Joshua Cooper, Applications of the Harary-Sachs Theorem for Hypergraphs, arXiv:2107.10781 [math.CO], 2021. (A320648, A320653)
  70. Jacob North Clark, Stephen Montgomery-Smith, Shapley-like values without symmetry, arXiv:1809.07747 [econ.TH], 2018. (A000372, A007153)
  71. Lane Clark, "An Asymptotic Expansion for the Catalan-Larcombe-French Sequence", J. Integer Sequences, Volume 7, 2004, Article 04.2.1.
  72. Sean Clark, Anton Preslicka, Josh Schwartz and Radoslav Zlatev, Some combinatorial conjectures on a family of toric ideals: A report from the MSRI 2011 Commutative Algebra graduate workshop.
  73. Timothy B. P. Clark, Adrian Del Maestro, arXiv:1506.02048, Moments of the inverse participation ratio for the Laplacian on finite regular graphs, arXiv preprint, 2015. (A002851)
  74. Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, to appear in Involve; http://people.wku.edu/tom.richmond/Papers/CountConvexTopsFTOsets.pdf
  75. W. Edwin Clark, The Integer Sequence Transform ab Where bn is the Number of Real Roots of the Polynomial a0 + a1x + a2x2 + … + anxn, Univ. S. Florida (2021). PDF We leave the proofs of the values of b = RR(a) suggested here and the computation of b for the remainder of the 345751 sequences a in The On-Line Encyclopedia of Integer Sequences ([8]) to the interested reader
  76. W. Edwin Clark, Mohamed Elhamdadi, Xiang-dong Hou, Masahico Saito and Timothy Yeatman, Connected Quandles Associated with Pointed Abelian Groups, Arxiv preprint arXiv:1107.5777, 2011.
  77. Clark, W. Edwin; Elhamdadi, Mohamed; Saito, Masahico; Yeatman, Timothy Quandle colorings of knots and applications. J. Knot Theory Ramifications 23 (2014), no. 6, 1450035, 29 pp.
  78. W. Edwin Clark and Mark Shattuck, The Integer Sequence Transform a &8614; b where bnis the Number of Real Roots of the Polynomial a0 + a1x + a2x2 + … + anxn, arXiv:2107.05572 [math.CO], 2021. (A346379)
  79. W. Edwin Clark and Mark Shattuck, The integer sequence transform ab, where bn is the number of real roots of the polynomial a₀ + ax + ax² + ⋯ + anxn, Quaestiones Mathematicae (2022). doi:10.2989/16073606.2022.2113473
  80. W. Edwin Clark and Xiang-dong Hou, Galkin Quandles, Pointed Abelian groups and sequence A000712, arXiv:1108.2215
  81. Robert Clausecker, The Quality of Heuristic Functions for IDA*, Zuse Institute Berlin (2020). PDF (A090031)
  82. Michael Clausen and Paul Hühne, Linear Time Fourier Transforms of Sn-k-invariant Functions on the Symmetric Group Sn, ISSAC '17 Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, p. 101-108. doi:10.1145/3087604.3087628
  83. J. C. Claussen, doi:10.1063/1.2939398 Time evolution of the rule 150 cellular automaton activity from a Fibonacci iteration, J. Math. Phys 49 (2008)
  84. Oliver K. Clay, The Long Search for Collatz Counterexamples, J. Humanistic Math. (2023) Vol. 13, No. 2, 199-227. See p. 205. doi:10.5642/jhummath.YQHO7207 (A005664)
  85. Sean Cleary, M Fischer, RC Griffiths, R Sainudiin, Some distributions on finite rooted binary trees, UCDMS Research Report NO. UCDMS2015/2, School of Mathematics and Statistics, University of Canterbury, Christchurch, NZ, 2015; http://lamastex.org/preprints/20151231_SomeDistsFRBTrees.pdf
  86. Sean Cleary, Roland Maio, Counting difficult tree pairs with respect to the rotation distance problem, arXiv:2001.06407 [cs.DS], 2020. (A000207)
  87. Julien Clément, Antoine Genitrini, Binary Decision Diagrams: from Tree Compaction to Sampling, arXiv:1907.06743 [cs.DS], 2019. (A028361, A131791)
  88. Julien Clément and Antoine Genitrini, Combinatorics of Reduced Ordered Binary Decision Diagrams: Application to uniform random sampling, arXiv:2211.04938 [cs.DS], 2022. (A327461)
  89. Julien Clément and Antoine Genitrini, An Iterative Approach for Counting Reduced Ordered Binary Decision Diagrams, Symp. Math. Found. Comp. Sci. (2023). doi:10.4230/LIPIcs.MFCS.2023.36 (A327461)
  90. Matthew S. Clement, Sean N. Raymond, Dimitri Veras, and David Kipping, Mathematical encoding within multi-resonant planetary systems as SETI beacons, arXiv:2204.14259 [astro-ph.EP], 2022. (A287148)
  91. Kieran Clenaghan, In Praise of Sequence (Co-)Algebra and its implementation in Haskell, arXiv:1812.05878 [math.CO], 2018. ``The encyclopaedia of integer sequences has hundreds of thousands of sequences. The sequences we have mentioned can be found using the OEIS search facility. It will be noticed that many of the sequences are accompanied by generating code written in various languages, including Haskell.’’
  92. Clift, Neill Michael Calculating optimal addition chains. Computing 91 (2011), no. 3, 265-284.
  93. Ann Clifton, Eva Czabarka, Kevin Liu, Sarah Loeb, Utku Okur, Laszlo Szekely, and Kristina Wicke, Universal rooted phylogenetic tree shapes and universal tanglegrams, arXiv:2308.06580 [math.CO], 2023. (A001190, A173382)
  94. Katie Clinch, Matthew Drescher, Tony Huynh, and Abdallah Saffidine, Constructions, bounds, and algorithms for peaceable queens, arXiv:2406.06974, Jun 11 2024
  95. Nathan Clisby, Enumerative Combinatorics of Lattice Polymers, Notices of the Amer. Math. Soc. (2021) Vol. 68, No. 4, 504-515. doi:10.1090/noti2255, also PDF Generalizations of Fibonacci numbers are obtained for higher𝑤,for example the so-called Tribonacci numbers for w = 3; the On-Line Encyclopedia of Integer Sequences (https://oeis.org) is an amazing resource for discovering interesting sequences.
  96. Benoit Cloitre, Chemins dans un tableau arithmetique, 2007.
  97. B. Cloitre, arXiv:1107.0812 A tauberian approach to RH, 2011
  98. B. Cloitre, On the fractal behavior of primes, 2011; http://bcmathematics.monsite-orange.fr/FractalOrderOfPrimes.pdf
  99. Benoit Cloitre, N. J. A. Sloane and Matthew J. Vandermast, "Numerical Analogues of Aronson's Sequence", J. Integer Sequences, Volume 6, 2003, Article 03.2.2.
  100. Trevor Clokie, Thomas F. Lidbetter, Antonio Molina Lovett, Jeffrey Shallit, Leon Witzman, Computational Aspects of Sturdy and Flimsy Numbers, arXiv:2002.02731 [cs.DS], 2020. See also Computational Fun with Sturdy and Flimsy Numbers, 10th International Conference on Fun with Algorithms. (LIPICs 2021) 189-210. PDF (A005360, A086342, A125121, A143027, A143069, A181862, A181863, A330696)
  101. Sam Coates, Metallic mean fractal systems and their tilings, arXiv:2405.04458 [cond-mat.other], 2024. See p. 13. (A267860)
  102. C Cobeli, M Prunescu, A Zaharescu, A growth model based on the arithmetic Z-game, arXiv preprint arXiv:1511.04315, 2015
  103. Cristian Cobeli and Alexandru Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11, 2014.
  104. Cristian Cobeli and Alexandru Zaharescu, A bias parity question for Sturmian words, arXiv:1811.06509 [math.NT], 2018. (A003849)
  105. Cristian Cobeli and Alexandru Zaharescu, On the Trajectories of a Particle in a Translation Invariant Involutive Field, Res. Math. (2024) Vol. 79, No. 223. doi:10.1007/s00025-024-02240-1
  106. S. Cockburn and J. Lesperance, Deranged socks, Mathematics Magazine, 86 (2013), 97-109.
  107. Cockburni, Sally; Song, Yonghyun The homomorphism poset of K2,n. Australas. J. Combin. 57 (2013), 79-108.
  108. P. Codara, O. M. D'Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700, 2013. Also Codara, Pietro; D'Antona, Ottavio M.; Hell, Pavol. A simple combinatorial interpretation of certain generalized Bell and Stirling numbers. Discrete Math. 318 (2014), 53--57. MR3141626.
  109. Pietro Codara, Ottavio M. D'Antona and Vincenzo Marra, Best Approximation of Ruspini Partitions in Gˆdel Logic, in Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Computer Science, Volume 4724/2007, Springer-Verlag.
  110. Pietro Codara, Ottavio M. D'Antona and Vincenzo Marra, An analysis of Ruspini partitions in Gˆdel logic, International Journal of Approximate Reasoning, Volume 50, Issue 6, June 2009, Pages 825-836.
  111. Pietro Codara, Ottavio M. D'Antona, Francesco Marigo, Corrado Monti, arXiv:1307.1348, Making simple proofs simpler.
  112. Pietro Codara, Gabriele Maurina, and Diego Valota, Computing Duals of Finite Gödel Algebras, Proceedings of the Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Science (2020) Vol. 21, 31–34. doi:10.15439/2020F169 (A130841)
  113. M. Codish, L. Cruz-Filipe, P. Schneider-Kamp, The Quest for Optimal Sorting Networks: Efficient Generation of Two-Layer Prefixes, arXiv preprint arXiv:1404.0948, 2014
  114. Michael Codish, Thorsten Ehlers, Graeme Gange, Avraham Itzhakov, Peter J. Stuckey, Breaking Symmetries with Lex Implications, International Symposium on Functional and Logic Programming (FLOPS 2018): Functional and Logic Programming, Springer, Cham, 182-197. doi:10.1007/978-3-319-90686-7_12
  115. M Codish, M Frank, A Itzhakov, A Mille, Computing the Ramsey Number R (4, 3, 3) using Abstraction and Symmetry breaking, preprint arXiv:1510.08266, 2015
  116. Michael Codish, G Gange, A Itzhakov, PJ Stuckey, Breaking Symmetries in Graphs: The Nauty Way, Preprint 2016; http://people.eng.unimelb.edu.au/pstuckey/papers/cp2016d.pdf
  117. Michael Codish, Alice Miller, Patrick Prosser and Peter Stuckey, Breaking Symmetries in Graph Representation. International Joint Conference on Artificial Intelligence (IJCAI 2013). Beijing, China, August 2013. To appear.
  118. Victor Codocedo, Guillaume Bosc, Mehdi Kaytoue, Jean-François Boulicaut, Amedeo Napoli, A Proposition for Sequence Mining Using Pattern Structures, In: Bertet K., Borchmann D., Cellier P., Ferré S. (eds) Formal Concept Analysis. ICFCA 2017. Lecture Notes in Computer Science, vol 10308. doi:10.1007/978-3-319-59271-8_7
  119. Mark W. Coffey, Reductions of particular hypergeometric functions 3F2 (a, a+1/3, a+2/3; p/3, q/3; +-1), arXiv preprint arXiv:1506.09160, 2015
  120. M. W. Coffey, V. de Angelis, A. Dixit, V. H. Moll, et al., The Zagier polynomials. Part II: Arithmetic properties of coefficients, PDF, 2013.
  121. Mark W. Coffey, James L. Hindmarsh, Matthew C. Lettington, John Pryce, On Higher Dimensional Interlacing Fibonacci Sequences, Continued Fractions and Chebyshev Polynomials, arXiv preprint arXiv:1502.03085, 2015.
  122. MW Coffey, MC Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv preprint arXiv:1510.05402, 2015
  123. Mark W. Coffey and Matthew C. Lettington, Binomial Polynomials mimicking Riemann's Zeta Function, arXiv:1703.09251 [math.NT], 2017.
  124. A. M. Cohen, Communicating mathematics across the web, pp. 283-300 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
  125. A. M. Cohen, H. Cuypers, E. Reinaldo Barreiro and H. Sterk, Interactive Mathematical Documents on the Web, to appear in Proceedings of Dagstuhl Conference.
  126. D. Cohen, Machine Head, New Scientist, 24 Feb 2001, Vol. 169, Number 2279, pp. 26-29. (Article about artificial intelligence that mentions the database.)
  127. Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
  128. Emma Cohen, PROBLEMS IN CATALAN MIXING AND MATCHINGS IN REGULAR HYPERGRAPHS, PhD Dissertation, Math. Dept., Georgia Tech., Dec 2016; www.aco.gatech.edu/sites/default/files/documents/cohen-thesis.pdf
  129. G. L. Cohen and D. E. Iannucci, "Derived Sequences", J. Integer Sequences, Volume 6, 2003, Article 03.1.1.
  130. Gerard Cohen and Jean-Pierre Flori, On a generalized combinatorial conjecture involving addition mod 2^k-1, Cryptology eprint archive 2011/400, doi:10.1504/IJICOT.2017.083831
  131. Joel E. Cohen, Variance Functions of Asymptotically Exponentially Increasing Integer Sequences Go Beyond Taylor's Law, J. Int. Seq., Vol. 25 (2022), Article 22.9.3. HTML (A000032, A000045, A000108, A014137, A094639)
  132. Jonathan D. Cohen, Concepts and Algorithms for Polygonal Simplification, SIGGRAPH 99 Course Tutorial #20: Interactive Walkthroughs of Large Geometric Datasets. pp. C1-C34. 1999. also in SIGGRAPH 2000 Course Tutorial.
  133. Michael Cohen and Yasuyuki Kachi, Recurrence Relations Rhythm, Conf. Math. Comp. Music (MCM 2024) Lect. Notes Comp. Sci. (LNCS) Vol. 14639, 381-386. doi:10.1007/978-3-031-60638-0_30
  134. Moshe Cohen, The Jones polynomials of 3-bridge knots via Chebyshev knots and billiard table diagrams, arXiv preprint arXiv:1409.6614, 2014. See also J. Knot Theory and Its Ramifications (2022) 2141006. doi:10.1142/S0218216521410066 (A000931)
  135. M. Cohen and M. Teicher, Kauffman's clock lattice as a graph of perfect matchings: a formula for its height, PDF 2012. Also Electronic Journal of Combinatorics, 21 (2014) <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i4p31 P4.31]
  136. Howard S. Cohl, Moritz Schubotz, and Olaf Teschke, Connecting Islands: Bridging zbMATH and DLMF with Scholix, a blueprint for connecting expert knowledge systems, Europ. Math. Soc., EMS Magazine (2021) No. 120, 66–67. doi:10.4171/MAG-35 The zbMATH Open team is currently in the process of linking zbMATH Open reviews and abstracts with various partners such as NIST Digital Library of Mathematical Functions (DLMF), The On-Line Encyclopedia of Integer Sequences, The arXiv, MathOverflow, and many others.
  137. S M Cojocaru et al., On the distribution of the sum of the digits of a factorial, Ramanujan J., July 25 2023
  138. C. Coker, A family of eigensequences, Discrete Math., 282 (2004), 249-250.
  139. Coker, Curtis, Enumerating a class of lattice paths. Discrete Math. 271 (2003), no. 1-3, 13-28.
  140. S. Cokus, Summing Sums Symbolically: How Computers Revolutionized the Field of Combinatorial Identities, ACMS Seminar, Winter Quarter 2001.
  141. Emma Colaric, Ryan DeMuse, Jeremy L. Martin, Mei Yin, Interval parking functions, arXiv:2006.09321 [math.CO], 2020. (A002538, A067318, A145080, A145081)
  142. Mark Colarusso, William Q. Erickson, and Jeb F. Willenbring, Contingency tables and the generalized Littlewood-Richardson coefficients, arXiv:2012.06928 [math.RT], 2020. (A002137)
  143. Micah Spencer Coleman, Asymptotic enumeration in pattern avoidance and in the theory of set partitions and asymptotic uniformity. Ph. D. Dissertation, University of Florida (2008). PDF (A088532)
  144. Vincent E. Coll, Andrew W. Mayers, Nick W. Mayers, Statistics on integer partitions arising from seaweed algebras, arXiv:1809.09271 [math.CO], 2018. (A300574)
  145. C. S. Collberg and T. A. Proebsting, AlgoVista - A Search Engine for Computer Scientists, Arizona Computer Science, Technical Report, 2000.
  146. C. S. Collberg and T. A. Proebsting, Problem Classification using Program Checking, Fun with Algorithms 2, May 2001.
  147. Collberg, Christian S.; and Proebsting, Todd A., Problem identification using program checking. Discrete Appl. Math. 144 (2004), no. 3, 270-280.
  148. A. Collins et al., Binary words, n-color compositions and ..., Fib. Quarterly, 51 (2013), 130-136.
  149. BENOIT COLLINS, ION NECHITA AND DEPING YE, THE ABSOLUTE POSITIVE PARTIAL TRANSPOSE PROPERTY FOR RANDOM INDUCED STATES, Arxiv preprint arXiv:1108.1935, 2011
  150. G. E. Collins and W. Krandick, On the computing time of the continued fractions method, Journal of Symbolic Computation, Volume 47, Issue 11, November 2012, Pages 1372-1412.
  151. Karen L. Collins, Ann N. Trenk, Finding Balance: Split Graphs and Related Classes, arXiv:1706.03092 [math.CO], June 2017.
  152. Nick Collins, LIVEDOG, INC.: Hard Science and A History of Mathematics, The 25th International Conference on Auditory Display (ICAD 2019), Northumbria University. PDF A fantastic source for novel ideas for sequence data is the Online Encyclopedia of Integer Sequences.
  153. Laura Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv preprint arXiv:1604.00803, 2016.
  154. Laura Colmenarejo, Aleyah Dawkins, Jennifer Elder, Pamela E. Harris, Kimberly J. Harry, Selvi Kara, Dorian Smith, and Bridget Eileen Tenner, On the Lucky and Displacement Statistics of Stirling Permutations, arXiv:2403.03280 [math.CO], 2024. (A000108, A008277)
  155. Laura Colmenarejo, Rosa Orellana, Franco Saliola, Anne Schilling, Mike Zabrocki, An insertion algorithm on multiset partitions with applications to diagram algebras, arXiv:1905.02071 [math.CO], 2019. (A000110, A020557)
  156. P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010), http://pierre.colomb.me/data/paper/icfca2010.pdf
  157. Pierre Colomb, Alexis Irlande, Olivier Raynaud and Yoan Renaud, About the Recursive Decomposition of the lattice of co-Moore Families, http://www.colomb.me/pierre/data/paper/icfca2011.pdf. Probably the following is essentially the same paper: P. Colomb, A. Irlande, O. Raynaud and Y. Renaud, Recursive decomposition and bounds of the lattice of Moore co-families, Annals of Mathematics and Artificial Intelligence, February 2013, Volume 67, Issue 2, pp 109-122.
  158. P. Colomb, A. Irlande, O. Raynaud, Y. Renaud, Recursive decomposition tree of a Moore co-family and closure algorithm, Annals of Mathematics and Artificial Intelligence, 2013, doi:10.1007/s10472-013-9362-x.
  159. Simon Colton, "Refactorable Numbers - A Machine Invention", J. Integer Sequences, Volume 2, 1999, Article 99.1.2.
  160. S. Colton, Theory Formation Applied to Learning, Discovery and Problem Solving, presented at Machine Intelligence 17, Bury St. Edmunds, July 2000.
  161. S. Colton, An Application-based Comparison of Automated Theory Formation and Inductive Logic Programming, Electronic Transactions on Artificial Intelligence, Vol. 4 (2000), Section B, pp. 97-117.
  162. S. Colton, Automated Theory Formation Applied to Four Learning Tasks, Linkoping Electronic Articles in Computer and Information Science, Vol. 5 (2000): nr 38.
  163. S. Colton, Automated Theorem Discovery: A Future Direction for Theorem Provers, Proceedings of the IJCAR workshop on Future Directions in Automated Reasoning, Siena, Italy, 2001.
  164. S. Colton, Mathematics - a new domain for datamining?, Proc IJCAI-01, Seattle, 2001
  165. Colton, Simon, Automated conjecture making in number theory using HR, Otter and Maple. J. Symbolic Comput. 39 (2005), no. 5, 593-615.
  166. S. Colton, A. Bundy and T. Walsh, HR - A system for machine discovery in finite algebra, Proceedings of the machine discovery workshop, European Conference on Artificial Intelligence, 1998. (postscript)
  167. S. Colton, A. Bundy and T. Walsh, Automated Discovery in Pure Mathematics, Proceedings of the ECAI-98 workshop on machine discovery, 1998.
  168. S. Colton, A. Bundy and T. Walsh, Automatic Concept Formation in Pure Mathematics. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999. (postscript)
  169. S. Colton, A. Bundy and T. Walsh, On the Notion of Interestingness in Automated Mathematical Discovery, to appear in the Special Issue of the International Journal of Human Computer Studies, 2000.
  170. S. Colton, A. Bundy and T. Walsh, Automatic Invention of Integer Sequences, in Proceedings, Seventeenth National Conference on Artificial Intelligence (Austin, Texas, July 30 - June 5, 2000), AAAI Press, 2000, to appear. [Winner of prize paper award] (postscript)
  171. S. Colton, A. Bundy and T. Walsh, Automatic identification of mathematical concepts, Proc ICML-2000, Stanford, CA, 2000. PDF
  172. S. Colton and L. Dennis, The NumbersWithNames Program, 7th International Symposium on Artificial Intelligence and Mathematics, 2002.
  173. S. Colton, S. Muggleton. Mathematical applications of inductive logic programming. Math. Learn. 64 (2006) 25-64 doi:10.1007/s10994-006-8259-x
  174. S. Colton and G. Steel, Artificial Intelligence and Scientific Creativity , Quarterly Journal of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour, Volume 102, Summer/Autumn 1999.
  175. S. Colton, D. Wagner, Using formal concept analysis in mathematical discovery, LNCS 4573 (2007) 205-220 doi:10.1007/978-3-540-73086-6_18
  176. Marius Coman, The Math Encyclopedia of Smarandache Type Notions, Vol. 1, Number Theory, 2013 Education Publishing, Columbus, OH, 2013, 134 pages. [Note: this URL does not contain a typo - it really is www.rxiv.org, NOT www.arxiv.org!]
  177. Marius Coman, Conjectures on types of primes and Fermat pseudoprimes, many based on Smarandache function [Note: this URL does not contain a typo - it really is www.vixra.org, NOT www.arxiv.org!]
  178. Marius Coman, "Conjectures on Primes and Fermat Pseudoprimes, Many Based on Smarandache Function", Education Publishing, Columbus, Ohio, 2014.
  179. Marius Coman, SEQUENCES OF INTEGERS, CONJECTURES AND NEW ARITHMETICAL TOOLS, Education Publishing, Columbus, Ohio, 2015; https://www.researchgate.net/profile/Marius_Coman/publication/277434066_Sequences_of_integers_conjectures_and_new_arithmetical_tools/links/556acca008aeccd7773a06c9.pdf.
  180. M. Coman, Ten prime-generating quadratic polynomials, Preprint 2015; https://www.researchgate.net/profile/Marius_Coman/publication/277912540_Ten_prime-generating_quadratic_polynomials/links/55769b4c08aeb6d8c01af38c.pdf
  181. Marius Coman, Conjecture that states that a Mersenne number with odd exponent is either prime either divisible by a 2-Poulet number, 2015; https://www.researchgate.net/profile/Marius_Coman/publication/280626311_Conjecture_that_states_that_a_Fermat_number_is_either_prime_either_divisible_by_a_2-Poulet_number/links/55bfd1f808ae9289a09b62cb.pdf
  182. M. Coman, On the special relation between the numbers of the form 505+ 1008k and the squares of primes, 2015; https://www.researchgate.net/profile/Marius_Coman/publication/280626584_On_the_special_relation_between_the_numbers_of_the_form_5051008k_and_the_squares_of_primes/links/55bfdc6208ae9289a09b63a0.pdf
  183. L. Comtet, Advanced Combinatorics, Reidel, 1974.
  184. G. Conant, Magmas and Magog Triangles, http://homepages.math.uic.edu/~gconant/Math/magmas.pdf, 2014.
  185. Jim Conant, Enumerating Diamond Cuts, MATCH Commun. Math. Comput. Chem. 91 (2024) 593–631.
  186. Aldo Conca, Hans-Christian Herbig, Srikanth B. Iyengar, Koszul property for the moment map of some classical representations, arXiv:1705.02688, [math.CA], 2017, also Collectanea Mathematica (2018) 69.3, 337–357. doi:10.1007/s13348-018-0226-x (A000108)
  187. Josep Conde, Mirka Miller, Josep M. Miret, Kumar Saurav, On the Nonexistence of Almost Moore Digraphs of Degree Four and Five, Mathematics in Computer Science (2015) p 1-5.
  188. Marston Conder, S Du, R Nedela, M Skoviera, Regular maps with nilpotent automorphism group, Journal of Algebraic Combinatorics, December 2016, Volume 44, Issue 4, pp 863–874; doi:10.1007/s10801-016-0692-8
  189. Marston Conder, George Havas and M. F. Newman, On one-relator quotients of the modular group, in Groups St Andrews 2009 in Bath (proceedings), vol. 1, London Math. Society Lecture Note Series, No. 387, Cambridge University Press, pp. 183-197.
  190. Marston Conder, Tomaž Pisanski, Arjana Žitnik, Vertex-transitive graphs and their arc-types, preprint arXiv:1505.02029, 2015. (A002513)
  191. D. Condon, S. Coskey, L. Serafin, C. Stockdale, On generalizations of separating and splitting families, arXiv preprint arXiv:1412.4683, 2014
  192. A. Conflitti, C. M. Da Fonseca and R. Mamede, doi:10.1016/j.laa.2011.07.043 The maximal length of a chain ... Lin. Algebra Applic. (2011)
  193. Alessandro Conflitti, C. M. da Fonseca and Ricardo Mamede, On the Largest Size of an Antichain in the Bruhat Order for A(2k,k), ORDER, 2011, doi:10.1007/s11083-011-9241-1
  194. Alessandro Conflitti, C. M. Da Fonseca and Ricardo Mamede, The maximal length of a chain in the Bruhat order for a class of binary matrices, http://www.mat.uc.pt/preprints/ps/pre1118.ps
  195. ALESSANDRO CONFLITTI, C. M. DA FONSECA AND RICARDO MAMEDE, On the largest size of an antichain in the Bruhat order for A(2k, k), http://www.mat.uc.pt/preprints/ps/pre1125.ps.
  196. Marcelo E. Coniglio, Francesc Esteva, Tommaso Flaminio, and Lluis Godo, On the expressive power of Lukasiewicz's square operator, arXiv:2103.07548 [math.LO], 2021. (A216371)
  197. Charles H. Conley and Valentin Ovsienko, Quiddities of polygon dissections and the Conway-Coxeter frieze equation, arXiv:2107.01234 [math.CO], 2021. (A005449, A218251, A301832, A348666)
  198. Charles H Conley and Valentin Ovsienko, Counting quiddities of polygon dissections, arXiv:2202.00269 [math.CO], 2021. (A348666)
  199. Charles H. Conley and Valentin Ovsienko, Shadows of rationals and irrationals: supersymmetric continued fractions and the super modular group, arXiv:2209.10426 [math-ph], 2022. (A001629, A004524, A054454)
  200. L. Connell, M. Levine, B. Mathes, J. Sukiennik, Toeplitz Transforms of Fibonacci Sequences, Preprint, 2015; http://www.colby.edu/math/program/studentpapers/2015-ConnellLevineMathesSukiennik.pdf
  201. Robert Connelly, Maurice Pierre, Maximally Dense Disc Packings on the Plane, arXiv:1907.03652 [math.MG], 2019. (A086759)
  202. Alain Connes, Caterina Consani, and Henri Moscovici, Zeta zeros and prolate wave operators, arXiv:2310.18423 [math.NT], 2023. (A007814)
  203. Michael P. Connolly, Probabilistic rounding error analysis for numerical linear algebra, Ph. D. Thesis, Univ. Manchester (UK, 2022). See p. 55. Abstract (A048645)
  204. Stephen B. Connor and Christopher J. Fewster, Integrals of products of incomplete beta functions with an application to string enumeration, arXiv:2104.12216 [math.CA], 2021. (A000984, A005449, A253487) Various integer sequences that emerge from this analysis are presently unknown to the On-Line Encyclopedia of Integer Sequences, indicating the novelty of our results.
  205. Keith Conrad, When are all groups of order n cyclic?, University of Connecticut, 2019. PDF (A003277)
  206. Keith Conrad, Square patterns and infinitude of primes, University of Connecticut, 2019. PDF (A000043, A050414, A057195, A057196, A057732, A059242, A059608, A059609, A059610)
  207. Keith Conrad, The infinitude of the primes, University of Connecticut, 2020. PDF (A000945)
  208. Keith Conrad, Wieferich primes, Univ. Conn. (2023). PDF (A001917)
  209. Tim Conrad, Eloi Ferrer, Daniel Mietchen, Larissa Pusch, Johannes Stegmuller, and Moritz Schubotz, Making Mathematical Research Data FAIR: A Technology Overview, arXiv:2309.11829 [cs.DL], 2023. The OEIS fulfills most of the FAIR criteria.
  210. Matthew M. Conroy, "A Sequence Related to a Conjecture of Schinzel", J. Integer Sequences, Volume 4, 2001, Article 01.1.7.
  211. Matthew M. Conroy, Travis Scholl, Stephanie Anderson, Shujing Lyu, Daria Micovic, WXML Final Report: OEIS/Wikipedia Task Force, University of Washington, 2016. [1]
  212. Sergio Consoli, Jan Korst, Gijs Geleijnse, Steffen Pauws, On the minimum quartet tree cost problem, arXiv:1807.00566 [cs.DM], 2018. (A000672)
  213. Sergio Consoli, Jan Korst, Gijs Geleijnse, Steffen Pauws, An exact algorithm for the minimum quartet tree cost problem, 4OR-Q J Oper Res (2018), 1–25. doi:10.1007/s10288-018-0394-2
  214. Sylvain Contassot-Vivier and Jean-François Couchot, Canonical Form of Gray Codes in N-cubes, In: Dennunzio A., Formenti E., Manzoni L., Porreca A. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2017. Lecture Notes in Computer Science, vol 10248. doi:10.1007/978-3-319-58631-1_6
  215. Roberto Conti and Pierluigi Contucci, A Natural Avenue, arXiv:2204.08982, April 2022.
  216. Roberto Conti, Pierluigi Contucci, and Vitalii Iudelevich, Bounds on tree distribution in number theory, arXiv:2401.03278 [math.NT], 2024. (A039833)
  217. Pierluigi Contucci, Emanuele Panizzi, Federico Ricci-Tersenghi, and Alina Sîrbu, A new dimension for democracy: egalitarianism in the rank aggregation problem, Arxiv preprint arXiv:1406.7642, 2014.
  218. Pierluigi Contucci, Emanuele Panizzi, Federico Ricci-Tersenghi & Alina Sîrbu, Egalitarianism in the rank aggregation problem: a new dimension for democracy, preprint. (A000670)
  219. Andrew R Conway, The design of efficient dynamic programming and transfer matrix enumeration algorithms, Journal of Physics A: Mathematical and Theoretical, 2 August 2017. doi:10.1088/1751-8121/aa8120
  220. Andrew R. Conway, Anthony J. Guttmann, Paul Zinn-Justin, 1324-avoiding permutations revisited, arXiv:1709.01248 [math.CO], 2017.
  221. Andrew R. Conway and Anthony J. Guttmann, Counting occurrences of patterns in permutations, arXiv:2306.12682 [math.CO], 2023. (A005802, A217057, A224179, A224181, A224182, A224249)
  222. J. H. Conway, "On Happy Factorizations", J. Integer Sequences, Volume 1, 1998, Article 98.1.1.
  223. J. H. Conway and T. Hsu, Some Very Interesting Sequences, in T. Shubin, D. F. Hayes, and G. Alexanderson (eds.), Expeditions in Mathematics, MAA Spectrum series, Washington, DC, 2011, chapter 6, pp. 75-86. See page 78. Also <a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.3557">Some Very Interesting Sequences</a>, 2006, p. 4.
  224. J. H. Conway, E. M. Rains, N. J. A. Sloane, On the existence of similar sublattices, arXiv:math/0207177
  225. J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389.
  226. J. H. Conway and N. J. A. Sloane, Four-Dimensional Lattices With the Same Theta Series, Duke Math. J., 66 (Int'l Math. Research Notices No. 4) (1992), 93-96. PDF (Pages are in reverse order) (A317965)
  227. Andrew Cook, Luca Viganò, A Game Of Drones: Extending the Dolev-Yao Attacker Model With Movement, Proceedings of the 6th Workshop on Hot Issues in Security Principles and Trust (HotSpot 2020): Affiliated with Euro S&P 2020, IEEE Computer Science Press, Genova, Italy (2020). PDF (A250001)
  228. C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
  229. C. K. Cook et al., Higher-order Boustrophedon transforms ..., Fib. Q., 55 (No. 3, 2017), 201-208.
  230. David Cook II, Nauty in Macaulay2, arXiv:1010.6194 [math.CO]
  231. David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140, 2013
  232. M. Cook and M. Kleber, arXiv:math.CO/0002220 Tournament sequences and Meeussen sequences, Electronic Journal of Combinatorics, Vol. 7(1) 2000, article #R44.
  233. John Paul Cook, Dov Zazkis, A Contradiction in How Introductory Textbooks Approach Matrix Multiplication, IMAGE 59 (Fall 2017), page 4. PDF "Doron Zeilberger wrote to tell me that he submitted a special case of our result to Neil Sloane. The number of singular values of a generic n × n × n tensor is now in the OEIS"
  234. Jane Ivy Coons, Seth Sullivant, The Cavender-Farris-Neyman Model with a Molecular Clock. arXiv:1805.04175 [math.AG], 2018. (A000111)
  235. Jane Ivy Coons, Seth Sullivant, The h*-polynomial of the order polytope of the zig-zag poset, arXiv:1901.07443 [math.CO], 2019. (A000111, A050446, A205497)
  236. M. Coons, J. Shallit, doi:10.1016/j.disc.2011.07.029 A pattern sequence approach to Stern's sequence, Disc. Math. 311 (22) (2011) 2630-2633
  237. Michael Coons, Paul Vrbik. An Irrationality Measure for Regular Paperfolding Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.6
  238. Alec S. Cooper, Oleg Pikhurko, John R. Schmitt, Gregory S. Warrington, Martin Gardner's minimum no-3-in-a-line problem, arXiv:1206.5350 [math.CO], 2012.
  239. Curtis Cooper, The Chinese Ring puzzle, the Crazy Elephant Dance puzzle, the b-Spinout puzzle, and Gray codes, The Mathematical Gazette (2019) Vol. 103, Issue 558, 431-441. doi:10.1017/mag.2019.103
  240. Curtis Cooper, Steven Miller, Peter J. C. Moses, Murat Sahin, Thotsaporn Thanatipanonda, On identities of Ruggles, Hradam, Howard, and Young, The Fibonacci Quarterly, 55.5 (2017), pp 42-65. PDF, see also http://thotsaporn.com/Cooper.pdf
  241. C. Cooper and M. Wiemann, Divisibility of an F-L Type Convolution, Applications of Fibonacci Numbers, Volume 9.
  242. Joseph E. Cooper III, A recurrence for an expression involving double factorials, arXiv:1510.00399 [math.CO], 2015.
  243. Joshua Cooper and Zhibin Du, Note on the spectra of Steiner distance hypermatrices, arXiv:2403.02287 [math.CO], 2024. See pp. 2, 4. (A048954)
  244. Joshua Cooper and Aaron Dutle, Greedy Galois Games, Amer. Math. Mnthly, 120 (2013), 441-451. arXiv:1110.1137
  245. Joshua N. Cooper and Alexander W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors; http://www.math.sc.edu/~cooper/Sigma.pdf, 2012. arXiv:1409.2909, and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Cooper/cooper3.html">J. Int. Seq. 16 (2013) #13.1.8</a>
  246. Joshua Cooper and Danny Rorabaugh, Asymptotic Density of Zimin Words, arXiv preprint arXiv:1510.03917
  247. Shaun Cooper, Level 6: Ramanujan's Cubic Continued Fraction, In: Ramanujan's Theta Functions, 2017. doi:10.1007/978-3-319-56172-1_7
  248. Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023. (A000172, A002893, A002895, A005258, A005259, A081085, A093388, A125143, A229111, A291898)
  249. Shaun Cooper, J Guillera, A Straub, W Zudilin, Crouching AGM, Hidden Modularity, arXiv preprint arXiv:1604.01106, 2016
  250. Shaun Cooper, J. G. Wan and W Zudilin, Holonomic alchemy and series for 1/pi, arXiv preprint arXiv:1512.04608, 2015
  251. Shaun Cooper, Dongxi Ye, Level 14 AND 15 Analogues of Ramanujan's Elliptic Functions to Alternative Bases, preprint. (A028887)
  252. J. Copeland and J. Haemer, Odds and Ends, SunExpert, May 1999, pp. 50-53.
  253. J. Copeland and J. Haemer, High-School Algebra, Backwards, SunExpert, Feb 2001, pp. 34-37.
  254. Tom Copeland, Lagrange a la Lah, at http://tcjpn.wordpress.com/
  255. Tom Copeland, Mathemagical Forests, at http://tcjpn.wordpress.com/
  256. R. Coquereaux, Global dimensions for Lie groups at level k and their conformally exceptional quantum subgroups. Rev. Un. Matem. Arg. 51 (2) (2010) 17-42 Dialnet, arXiv:1003.2589
  257. R. Coquereaux, Quantum McKay correspondence and global dimensions for fusion and module-categories associated with Lie groups, arXiv preprint arXiv:1209.6621, 2012
  258. R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015.
  259. Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. (A000108, A000110, A000296, A000581, A001263, A001287, A001700, A002411, A002450, A002802, A008277, A008299, A025035, A025036, A025037, A025038, A025039, A059260, A103371, A108263, A134991, A144431, A185259, A245551, A275514, A297178, A297179)
  260. Marco Coraggio and Mario di Bernardo, Data-driven design of complex network structures to promote synchronization, arXiv:2309.10941 [eess.SY], 2023. (A001187)
  261. Cristina B. Corcino, Roberto B. Corcino, István Mező, Continued fraction expansions for the Lambert W function, Aequationes mathematicae (2018), 1-14. doi:10.1007/s00010-018-0559-2
  262. Roberto B. Corcino, Hankel Transform of the First Form (q,r)-Dowling Numbers, arXiv:2103.08062 [math.CO], 2021.
  263. Roberto B. Corcino, Jay M. Ontolan, Gladys Jane Rama, Hankel Transform of the Second Form (q, r)-Dowling Numbers, European Journal of Pure and Applied Mathematics (2019) Vol. 12, No. 4, 1676-1688. doi:10.29020/nybg.ejpam.v12i4.3583
  264. R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694, 2013.
  265. Roberto B. Corcino, Mary Joy R. Latayada, Mary Ann Ritzell P. Vega, Hankel Transform of (q, r)-Dowling Numbers, European Journal of Pure and Applied Mathematics (2019) Vol. 12, No. 2, 279-293. doi:10.29020/nybg.ejpam.v12i2.3406
  266. Andressa Paola Cordeiro, Alexandre Tavares Baraviera, and Alex Jenaro Becker, Entropy for k-trees defined by k transition matrices, arXiv:2307.05850 [math.DS], 2023. (A004019, A088679)
  267. Christophe Cordero, Enumerative Combinatorics of Prographs, Proceedings of the 30th Conference on Formal Power Series and Algebraic Combinatorics (Hanover), Séminaire Lotharingien de Combinatoire 80B (2018) Article #58. PDF "We also proved thanks to computer experiments and the OEIS [7] that prographs made of only one sort of operator with two inputs and three outputs can model the biological notion of tandem duplication trees"
  268. Christophe Cordero, Factorizations of Cyclic Groups and Bayonet Codes, arXiv:2301.13566 [math.CO], 2023. (A102562, A320632)
  269. Katherine Cordwell, Alyssa Epstein, Anand Hemmady, Steven J. Miller, Eyvindur A. Palsson, Aaditya Sharma, Stefan Steinerberger, Yen Nhi Truong Vu, On algorithms to calculate integer complexity, arXiv:1706.08424 [math.NT], 2017. Also in Integers (2019) 19, Article #A12. Abstract, #A12 (A005245)
  270. Robert Cori, Indecomposable permutations, hypermaps and labeled Dyck paths, Journal of Combinatorial Theory, Series A, In Press, Corrected Proof, Available online 21 May 2009.
  271. Robert Cori, Enrica Duchi, Veronica Guerrini, Simone Rinaldi, Families of Parking Functions Counted by the Schröder and Baxter Numbers, Lattice Path Combinatorics and Applications, Developments in Mathematics (DEVM Vol. 58, 2019), Springer, Cham, 194-225. doi:10.1007/978-3-030-11102-1_10
  272. R. Cori, G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628, 2013
  273. R. Cori, G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344; http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewFile/dmAT0130/4488
  274. Robert Cori, Gabor Hetyei, Genus one partitions, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, pp. 333-344, <hal-01207612>
  275. Robert Cori, G Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992, 2017
  276. Robert Cori and Gábor Hetyei, On reduced unicellular hypermonopoles, arXiv:2403.19569 [math.CO], 2024.
  277. R. M. Corless, Symbolic Computation in Nonlinear Dynamics, Proceedings of Let's Face Chaos Through Nonlinear Dynamics, Ljubljana, Slovenia, 1993; Open Syst. Inf. Dyn 3 (1995) 131 doi:10.1007/BF02228812.
  278. Robert M. Corless, N Fillion, Backward Error Analysis for Perturbation Methods, arXiv preprint arXiv:1609.01321, 2016.
  279. Robert M. Corless, Mark Giesbrecht, Leili Rafiee Sevyeri, and B. David Saunders, On Parametric Linear System Solving, International Workshop on Computer Algebra in Scientific Computing (CASC 2020) Lecture Notes in Computer Science (LNCS) Vol. 12291, Springer, Cham, 188-205. doi:10.1007/978-3-030-60026-6_11
  280. Robert M. Corless and Steven E. Thornton, The bohemian eigenvalue project, Newsletter, ACM Communications in Computer Algebra, Volume 50 Issue 4, December 2016, p. 158-160. doi:10.1145/3055282.3055289
  281. Tomás M. Coronado, Balance indices for phylogenetic trees under well-known probability models, Linköping University (Sweden, 2020). PDF (A300445)
  282. Tomás M. Coronado, Arnau Mir, Francesc Rosselló, Gabriel Valiente, A balance index for phylogenetic trees based on quartets, arXiv:1803.01651 [q-bio.PE], 2018. (A300445)
  283. Tomás M. Coronado, Arnau Mir, Francesc Rosselló, Gabriel Valiente, A balance index for phylogenetic trees based on rooted quartets, Journal of Mathematical Biology (2019) Vol. 79, Issue 3, 1105–1148. doi:10.1007/s00285-019-01377-w
  284. Ruth Corran, Matthieu Picantin, A new Garside structure for braid groups of type (e,e,r) (2009) arXiv:0901.0645
  285. B. Correll, The density of Costas arrays and three-free permutations, in Statistical Signal Processing Workshop (SSP), 2012 IEEE, Date of Conference: 5-8 Aug. 2012, Pages 492 - 495.
  286. Bill Correll Jr, RW Ho, A Note on 3-free Permutations, arXiv preprint arXiv:1712.00105, 2017.
  287. F. Corset, M. Fouladirad, C. Paroissin, E. Remy, A parametric lifetime model for a multicomponents system with spatial interactions, Applied Stochastic Models in Business and Industry (2019) Vol. 35, Issue 2, 221-233. doi:10.1002/asmb.2449
  288. Víctor Corsino, José Manuel Gilpérez, and Luis Herrera, KitBit: A New AI Model for Solving Intelligence Tests and Numerical Series, arXiv:2206.08965 [cs.AI], 2022. See also IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Vol. 14, No. 8, 1-11. (mentions A071420, A082310, A121294, A194385, A227589 as examples) KitBit algorithms have been used to find the implicit patterns in the integer sequences of the complete Online Encyclopedia of Integer Sequences (OEIS) database, …, many of which are highly complex and reach the largest number of resolved series reported to date.
  289. Sylvie Corteel and Pawe Hitczenko, "Generalizations of Carlitz Compositions", J. Integer Sequences, Volume 10, 2007, Article 07.8.8.
  290. Sylvie Corteel, Alexander Lazar, and Anna Vanden Wyngaerd, Decorated square paths at q = −1, arXiv:2408.10640 [math.CO], 2024. See p. 3. (A009843)
  291. Sylvie Corteel, Megan A. Martinez, Carla D. Savage, and Michael Weselcouch, Patterns in Inversion Sequences I, arXiv:1510.05434[math.CO], 2015. "We especially owe a debt of gratitude to Neil Sloane and the OEIS Foundation, Inc. Our work was greatly facilitated by the On-Line Encyclopedia of Integer Sequences".
  292. C Coscia, J DeWitt, F Yang, Y Zhang, Online and Random Domination of Graphs, arXiv preprint arXiv:1509.08876, 2015
  293. J. B. Cosgrave and K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, 118 (Nov. 2011), 812-829.
  294. J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013; doi:10.1007/s10474-013-0357-1.
  295. J. B. Cosgrave, K. Dilcher, Pairs of reciprocal quadratic congruences involving primes, Fib. Quart. 51 (2) (2013) 98
  296. John B. Cosgrave and Karl Dilcher, The multiplicative orders of certain Gauss factorials, II, Preprint, 2014; Funct. Approx. Comment. Math. Volume 54, Number 1 (2016), 73-93.
  297. J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp. 86 (2017) 899-933 paper #10 doi:10.1090/mcom/3111.
  298. Giray Coşkun, Melih Taha Öz, Ahmet Enes Deveci, Ayşenur Çerçi, Fatih Cemil Demir, Elif İpek Şahin, and Kağan Kurşungöz, Kanade Russell's identity finder, Sabancı University Program for Undergraduate Research (2019). PDFIdentities are also checked from https://oeis.org/ to have reliable test cases for the algorithm.
  299. G. E. Cossali, "A Common Generating Function for Catalan Numbers and Other Integer Sequences", J. Integer Sequences, Volume 6, 2003, Article 03.1.8.
  300. Davi B. Costa, Bogdan A. Dobrescu, Patrick J. Fox, Chiral Abelian gauge theories with few fermions, arXiv:2001.11991 [hep-ph], 2020. (A053871)
  301. Costa, Lilia; Nichols, Thomas; Smith, Jim Q. doi:10.1214/17-BJPS375 Studying the effective brain connectivity using multiregression dynamic models. Braz. J. Probab. Stat. 31, No. 4, 765-800 (2017).
  302. J. P. Costalonga, R. J. Kingan, and S. R. Kingan, Constructing minimally 3-connected graphs, arXiv:2012.12059 [math.CO], 2020. (A199676, A204198) All of the minimally 3-connected graphs generated were validated using a separate routine based on the Python iGraph [...] vertex disjoint paths method, in order to verify that each graph was 3-connected and that all single edge-deletions of the graph were not. The overall number of generated graphs was checked against the published sequence on OEIS.
  303. Patrick Costello, Ranthony A. C. Edmonds, Gaussian Amicable Pairs, Missouri J. Math. Sci. (2018) Vol. 30, Issue 2, 107-116. Abstract
  304. Miguel Couceiro, Jimmy Devillet, Every quasitrivial n-ary semigroup is reducible to a semigroup, (2019) [math]. Abstract (A292932, A292933, A308351, A308352, A308354, A308362)
  305. Miguel Couceiro, Jimmy Devillet, Jean-Luc Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017. (A000129, A002605, A048739, A163271, A293004, A293005, A293006, A293007, A292932, A292933, A292934)
  306. D. Coupier, A. Desolneux and B. Ycart, Image Denoising by Statistical Area Thresholding, Journal of Mathematical Imaging and Vision, Volume 22, Numbers 2-3 / May, 2005.
  307. Julien Courtiel, K Yeats, N Zeilberger, Connected chord diagrams and bridgeless maps, arXiv preprint arXiv:1611.04611, 2016
  308. M. A. Covington, The number of distinct alignments of two strings, (pdf, ps), Journal of Quantitative Linguistics, 2004, to appear.
  309. Robert George Cowell, A unifying framework for the modelling and analysis of STR DNA samples arising in forensic casework, arXiv:1802.09863 [stat.AP], 2018. (A000225)
  310. Simon Cowell, A Formula for the Reliability of a d-dimensional Consecutive-k-out-of-n:F System, arXiv preprint arXiv:1506.03580, 2015
  311. Robert Cowen, Improving the Kruskal-Katona Bounds for Complete Subgraphs of a Graph, The Mathematica Journal (2018) Vol. 20. doi:10.3888/tmj.20-6 (A000297, A020917)
  312. John R. Cowles and Ruben Gamboa, Verifying Sierpinski and Riesel Numbers in ACL2, Arxiv preprint arXiv:1110.4671, 2011
  313. Danielle Cox and K. McLellan, A problem on generation sets containing Fibonacci numbers, Fib. Quart., 55 (No. 2, 2017), 105-113.
  314. Darrell Cox, The 3n + 1 Problem: A Probabilistic Approach, Journal of Integer Sequences, Vol. 15 (2012), #12.5.2.
  315. David A. Cox and Jerry Shurman, Geometry and Number Theory on Clovers, Amer. Math. Monthly (2005) Vol. 112, No. 8, 682-704. doi:10.2307/30037571 (A005109)
  316. Shelby Cox, Pratik Misra, and Pardis Semnani, Homaloidal Polynomials and Gaussian Models of Maximum Likelihood Degree One, arXiv:2402.06090 [math.AG], 2024. (A000108, A000295)
  317. Gregory E. Coxson, Enumeration and Generation of PSL Equivalence Classes for Quad-Phase Codes of Odd Length, IEEE Transactions on Aerospace and Electronic Systems (2019). doi:10.1109/TAES.2019.2923298
  318. Gregory Emmett Coxson and Jon Carmelo Russo, Enumeration and Generation of PSL Equivalence Classes for Quad-Phase Codes of Even Length, IEEE Transactions on Aerospace and Electronic Systems, Year: 2017, Volume: 53, Issue: 4, Pages: 1907 - 1915. doi:10.1109/TAES.2017.2675238 ["If this initial subsequence is tried in the query function at the OEIS, the query returns a match with sequence A225826", "The following result is from the OEIS, sequence A225826"]
  319. William Craig, Seaweed Algebras and the Index Statistic for Partitions, arXiv:2112.09269 [math.CO], 2021. (A300574)
  320. Nicolas Crampe, Julien Gaboriaud, and Luc Vinet, Racah algebras, the centralizer Zn(sl2} and its Hilbert-Poincaré series, arXiv:2105.01086 [math.RT], 2021. (A005043, A088855, A151374)
  321. James Cranch, Representing and Enumerating Two-Dimensional Pasting Diagrams, http://jdc41.user.srcf.net/research/pasting/Pasting.pdf, 2013.
  322. Harry Crane. (2015) Left-right arrangements, set partitions, and pattern avoidance . Australasian Journal of Combinatorics, 61(1):57-72.
  323. Harry Crane, The ubiquitous Ewens sampling formula, preprint, 2015; PDF
  324. Harry Crane, Stephen DeSalvo, Pattern Avoidance for Random Permutations, arXiv:1509.07941.
  325. H. Crane and P. McCullagh. (2015) Reversible Markov structures on divisible set partitions. Journal of Applied Probability, 52(3), to appear. http://www.stat.rutgers.edu/home/hcrane/Publications/15253-final.pdf
  326. Alissa S. Crans and Glen T. Whitney, <a href="https://bookstore.ams.org/PRB/38">The Mathematical Playground: People and Problems from 31 Years of Math Horizons</a>, AMS/MAA Problem Books (2024) Vol. 38. Problem 419, pp. 112-113. (A347147, A347148)
  327. Alissa S. Crans and Glen T. Whitney, <a href="https://bookstore.ams.org/PRB/38">The Mathematical Playground: People and Problems from 31 Years of Math Horizons</a>, AMS/MAA Problem Books (2024) Vol. 38. Problem 212, pp. 77-78. (A019727)
  328. Alissa S. Crans and Glen T. Whitney, <a href="https://bookstore.ams.org/PRB/38">The Mathematical Playground: People and Problems from 31 Years of Math Horizons</a>, AMS/MAA Problem Books (2024) Vol. 38. Problem 367, p. 108. (A360564, A360566)
  329. Daniel W. Cranston and Chun-Hung Liu, Proper Conflict-free Coloring of Graphs with Large Maximum Degree, arXiv:2211.02818 [math.CO], 2022. (A008299)
  330. Selden Crary, Factorization of the Determinant of the Gaussian-Covariance Matrix of Evenly Spaced Points Using an Inter-dimensional Multiset Duality, arXiv preprint arXiv:1406.6326, 2014
  331. Selden Crary, Richard Diehl Martinez, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017.
  332. Selden Crary, Tatiana Nizhegorodova, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ia. MINOS for IMSPE Evaluation and Optimal-IMSPE-Design Search, arXiv:1704.06250 [stat.ME], 2017.
  333. Charles Cratty, Samuel Erickson, Frehiwet Negass, Lara Pudwell, Pattern Avoidance in Double Lists, preprint. (A010854, A005843, A008585, A052905, A183897, A000032, A000325)
  334. Matthew Brendan Crawford, On the Number of Representations of One as the Sum of Unit Fractions, Master's Thesis, Virginia Polytechnic Institute and State University (2019). Abstract (A000058, A002966, A076393)
  335. Samuel Creedon and Volodymyr Mazorchuk, Almost all permutations and involutions are Kostant negative, arXiv:2411.13043 [math.RT], 2024. (A000085)
  336. Danielle Cressman, Jonathan Lin, An Nguyen, Luke Wiljanen, Generalized Action Graphs, (2020). PDF (A000108)
  337. Crilly, Tony. "A supergolden rectangle." The Mathematical Gazette 78.483 (1994): 320-325.
  338. Tony Crilly, A family of discrete spirals, The Mathematical Gazette (2020) Vol. 104, Issue 560, 215-224. doi:10.1017/mag.2020.43 (A056520)
  339. Tony Crilly and Colin R. Fletcher, The 'hitchhiker triangle' and the problem of perimeter = area, The Mathematical Gazette, Volume 99 / Issue 546 / November 2015, pp 402-415.
  340. Andrew Crites, Enumerting pattern avoidance for affine permutations, El. J. Combinat. 17 (2010) #R127
  341. Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, master’s thesis, 2018. PDF (A000252, A001788, A001809, A002884, A003787, A003788, A003793, A005329, A006116, A008302, A011785, A022166, A053846, A064767, A065128, A065498, A083906, A132186, A182176, A270880, A270881, A286331, A288253, A288853, A289540, A289544, A289545, A289946, A290516, A290974, A293844, A293845, A296548, A296605, A297892, A298399, A298561, A300915)
  342. Kristina Crona and Mengming Luo, Higher order epistasis and fitness peaks, arXiv:1708.02063 [q-bio.QM], 2017.
  343. Kristina Crona, Mengming Luo, Devin Greene, An Uncertainty Law for Microbial Evolution, Journal of Theoretical Biology (2020) Vol. 489, Article No. 110155. doi:10.1016/j.jtbi.2020.110155 (A000984)
  344. Cropper, Sebrina Ruth, "Ranking Score Vectors of Tournaments" (2011). All Graduate Reports and Creative Projects. Paper 91. Utah State University, School of Graduate Studies, http://digitalcommons.usu.edu/gradreports/91
  345. S. Crowley, Some Fractal String and Hypergeometric Aspects of the Riemann Zeta Function, http://www.vixra.org/abs/1202.0066, 2012
  346. Stephen Crowley, A Mysterious Three Term Integer Sequence Related to a Lambert W Function Solution to a Certain Transcendental Equation
  347. S. Crowley, Mellin and Laplace Integral Transforms Related to the Harmonic Sawtooth Map and a Diversion Into The Theory Of Fractal Strings, http://vixra.org/pdf/1202.0079v2.pdf, 2012
  348. Stephen Crowley, Two new zeta constants: fractal string, continued fraction and hypergeometric aspects of the Riemann Zeta Function, arXiv:1207.1126
  349. S. Crowley, Integral Transforms of the Harmonic Sawtooth Map, The Riemann Zeta Function, Fractal Strings, and a Finite Reflection Formula, arXiv preprint arXiv:1210.5652, 2012.
  350. Gabriel Crudele, Peter Dukes, and Jonathan A. Noel, Six Permutation Patterns Force Quasirandomness, arXiv:2303.04776 [math.CO], 2023. (A264603)
  351. Justin Crum, Cyrus Cheng, David A. Ham, Lawrence Mitchell, Robert C. Kirby, Joshua A. Levine, and Andrew Gillette, Bringing Trimmed Serendipity Methods to Computational Practice in Firedrake, arXiv:2104.12986 [math.NA], 2021. (A064808)
  352. Carlos Antonio Cruz López, Juan Luis François, Two alternative approaches to the solution of cyclic chains in transmutation and decay problems, Computer Physics Communications (2020) 107225. doi:10.1016/j.cpc.2020.107225
  353. Marek Čtrnáct and Eryk Kopczyński, <a href="https://zenorogue.github.io/tes-catalog/?c=k-uniform%2F">Tesselation catalog</a> (A057275, A068599)
  354. John Cu, Length of Embedded Circuits in Geodetic Graphs, AMSI Vacation Research Scholarships, Univ. of Tech. (Sydney, Australia, 2021). PDF (A001349, A337178, A337179)
  355. Andrew C. Cullen, Simon R. Clarke, A Fast, Spectrally Accurate Homotopy Based Numerical Method For Solving Nonlinear Differential Equations, arXiv:1811.00676 [math.NA], 2018.
  356. J. Cummings, D. Kral, F. Pfender, K. Sperfeld et al., Monochromatic triangles in three-coloured graphs, Arxiv preprint arXiv:1206.1987. 2012.
  357. Mike Cummings and Adam Van Tuyl, The GeometricDecomposability package for Macaulay2, arXiv:2211.02471 [math.AC], 2022. (A002905)
  358. Robert Cummings, Jeffrey Shallit, and Paul Staadecker, Mesosome Avoidance, arXiv:2107.13813 [cs.DM], 2021. (A341277)
  359. F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix for chaotic cavities, arXiv preprint arXiv:1412.2172, 2014.
  360. Fabio Deelan Cunden, Marilena Ligabò, and Tommaso Monni, Random matrices associated to Young diagrams, arXiv:2301.13555 [math.PR], 2023. (A000108, A005132, A007226, A007228, A124724)
  361. Fabio Deelan Cunden, Francesco Mezzadri, Nick Simm, and Pierpaolo Vivo, Correlators for the Wigner–Smith time-delay matrix of chaotic cavities, J. Phys. A: Math. Theor. (2016) Vol. 49, No. 18. See p. 14. doi:10.1088/1751-8113/49/18/18LT01. See also arXiv:1601.06690. (A002002, A047781)
  362. K.K.A. Cunningham, Tom Edgar, A.G. Helminck, B.F. Jones, H. Oh, R. Schwell, and J.F. Vasquez, doi:10.1285/i15900932v34n2p23 On the Structure of Involutions and Symmetric Spaces of Dihedral Groups, Note di Matematica, Vol. 34 No. 2 (2014). See also arXiv:1205.3207, 2012.
  363. Michael Cuntz, Integral modular data and congruences (2006), arXiv:math/0611233; Journal of Algebraic Combinatorics, Volume 29, Number 3 / May, 2009.
  364. Amaury Curiel and Antoine Genitrini, Lexicographic unranking algorithms for the Twelvefold Way, hal-04411470� [cs], [math], 2024. Abstract (A008277)
  365. James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Properties of a Ternary Infinite Word, arXiv:2206.01776 [cs.DM], 2022. (A005251, A287072)
  366. James Currie, Narad Rampersad, Growth rate of binary words avoiding xxx^R, arXiv preprint arXiv:1502.07014, 2015 JIS 18 (2015) 15.10.3
  367. J. Currie, N. Rampersad, Binary words avoiding xx^Rx and strongly unimodal sequences, arXiv preprint arXiv:1508.02964, 2015
  368. B. Curry, G. A. Wiggins and G. Hayes, Representing trees with constraints, Lloyd, J. (ed.) et al., Computational Logic- CL 2000. 1st International Conference, London, GB, July 24-28, 2000. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 1861, 315-325 (2000). Also another version. doi:10.1007/3-540-44957-4_21
  369. Eugene Curtin, Junu Lee, Andrew Lu, Sophia Sun, A modified Grassmann algebra approach to theorems on permanents and determinants, Linear Algebra and its Applications (2019) Vol. 581, 20-35. doi:10.1016/j.laa.2019.07.002
  370. T. L. Curtright, More on Rotations as Spin Matrix Polynomials, arXiv preprint arXiv:1506.04648, 2015
  371. T. L. Curtright, D. B. Fairlie, C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541, 2014
  372. T. L. Curtright, T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767, 2014.
  373. Philip Cuthbertson, David J. Hemmer, Brian Hopkins, and William J. Keith, Partitions with fixed points in the sequence of first-column hook lengths, arXiv:2401.06254 [math.CO], 2024. (A276428)
  374. Luisa Cutillo, Giuseppe De Marco and Chiara Donnini, Networks of Financial Contagion, Advanced Dynamic Modeling of Economic and Social Systems, Studies in Computational Intelligence Volume 448, 2013, pp 31-48; doi:10.1007/978-3-642-32903-6_4.
  375. Fabio Cuzzolin, Understanding belief functions, The Geometry of Uncertainty. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer, Cham (2021), 59-108. doi:10.1007/978-3-030-63153-6_3
  376. Karin Cvetko-Vah, Michael Kinyon, Jonathan Leech, Tomaž Pisanski, Regular Antilattices, arXiv:1911.02858 [math.RA], 2019. (A000005, A000012, A007425, A007426)
  377. Aleksandar Cvetkovic, Predrag Rajkovic and Milos Ivkovic, "Catalan Numbers, the Hankel Transform and Fibonacci Numbers", J. Integer Sequences, Volume 5, 2002, Article 02.1.3.
  378. Cvetkovic, Dragos; Fowler, Patrick; Rowlinson, Peter; Stevanovic, Dragan, Constructing fullerene graphs from their eigenvalues and angles. Special issue on algebraic graph theory (Edinburgh, 2001). Linear Algebra Appl. 356 (2002), 37-56.
  379. Djurdje Cvijović, Two general families of integer–valued polynomials associated with finite trigonometric sums, Journal of Mathematical Analysis and Applications (2020) Vol. 488, No. 1, 124057. doi:10.1016/j.jmaa.2020.124057
  380. Predrag Cvitanovic, Asymptotic estimates and gauge invariance, Nuclear Physics B, Volume 127, Issue 1, 22 August 1977, Pages 176-188.
  381. P. Cvitanovic', Group Theory, webbook.
  382. Éva Czabarka, Peter Dankelmann, Trevor Olsen, László A. Székely, Wiener Index and Remoteness in Triangulations and Quadrangulations, arXiv:1905.06753 [math.CO], 2019. (A001400, A014125, A131423)
  383. Eva Czabarka, Peter L. Erdos, Virginia Johnson, Anne Kupczok and Laszlo A. Szekely, Asymptotically normal distribution of some tree families relevant for phylogenetics, and of partitions without singletons, Arxiv preprint arXiv:1108.6015, 2011
  384. É. Czabarka, R. Flórez, L. Junes, Some Enumerations on Non-Decreasing Dyck Paths, The Electronic Journal of Combinatorics, 22(1), 2015, #P1.3.
  385. É. Czabarka, R. Flórez, L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
  386. Éva Czabarka, Rigoberto Flórez, Leandro Junes, José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Mathematics (2018) Vol. 341, Issue 10, 2789-2807. doi:10.1016/j.disc.2018.06.032
  387. Gábor Czédli, Lattices with lots of congruence energy, arXiv:2205.02294 [math.RA], 2022. (A000110, A008277, A005493, A138378)
  388. Gábor Czédli, Minimum-sized generating sets of the direct powers of free distributive lattices, arXiv:2309.13783 [math.CO], 2023. (A000112, A000372)
  389. Mariusz Czekała and Agnieszka Bukietyńska, Distribution of Inversions and the Power of the τ-Kendall's Test</a>, in J. Świątek, Z. Wilimowska, L. Borzemski, A. Grzech (eds), Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology - ISAT 2016 - Part III, pp. 175-185. doi:10.1007/978-3-319-46589-0_14
  390. Mariusz Czekała, Agnieszka Bukietyńska, Agnieszka Matylda Schlichtinger, Estimation of the Probability of Inversion in the Test of Variable Dependencies, Iterative Non-iterative Integrals in Quantum Field Theory</a>, Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology (ISAT 2018), Part III, 145-156. doi:10.1007/978-3-319-99993-7 (A008302)
  391. Agustina Czenky, Unoriented 2-dimensional TQFTs and the category Rep(St ≀ ℤ₂)$, arXiv:2306.08826 [math.QA], 2023. See p. 40. (A004211)
  392. Agustina Czenky, Diagramatics for cyclic pointed fusion categories, arXiv:2404.08084 [math.QA], 2024. See p. 15. (A092089)

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.