login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001917
(p-1)/x, where p = prime(n) and x = ord(2,p), the smallest positive integer such that 2^x == 1 (mod p).
(Formerly M0069 N0022)
33
1, 1, 2, 1, 1, 2, 1, 2, 1, 6, 1, 2, 3, 2, 1, 1, 1, 1, 2, 8, 2, 1, 8, 2, 1, 2, 1, 3, 4, 18, 1, 2, 1, 1, 10, 3, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 6, 1, 3, 8, 2, 10, 5, 16, 2, 1, 2, 3, 4, 3, 1, 3, 2, 2, 1, 11, 16, 1, 1, 4, 2, 2, 1, 1, 2, 1, 9, 2, 2, 1, 1, 10, 6, 6, 1, 2, 6, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 1, 1, 1, 1, 1, 2
OFFSET
2,3
COMMENTS
Also number of cycles in permutations constructed from siteswap juggling pattern 1234...p.
Also the number of irreducible polynomial factors for the polynomial (x^p-1)/(x-1) over GF(2), where p is the n-th prime. - V. Raman, Oct 04 2012
The sequence is unbounded: for any value of M, there exists an element of the sequence divisible by M. See the proof by David Speyer below. - Shreevatsa R, May 24 2013
REFERENCES
M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 131.
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
W. Meissner, Über die Teilbarkeit von 2^p-2 durch das Quadrat der Primzahl p = 1093, Sitzungsberichte Königlich Preussischen Akadamie Wissenschaften Berlin, 35 (1913), 663-667.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. Anderson and D. A. Preece, Combinatorially fruitful properties of 3*2^(-1) and 3*2^(-2) modulo p, Discr. Math., 310 (2010), 312-324.
Keith Conrad, Wieferich primes, Univ. Conn. (2023).
W. Meissner, Über die Teilbarkeit von 2^p-2 durch das Quadrat der Primzahl p = 1093, Sitzungsberichte Königlich Preussischen Akadamie Wissenschaften Berlin, 35 (1913), 663-667. [Annotated scanned copy]
FORMULA
From Vladimir Shevelev, May 26 2008: (Start)
a(n) = A006694((p_n-1)/2) where p_n is the n-th odd prime.
Conjecture: k*a(n) = A006694(((p_n)^k-1)/2). (End)
MAPLE
with(numtheory); [seq((ithprime(n)-1)/order(2, ithprime(n)), n=2..130)];
with(group); with(numtheory); gen_rss_perm := proc(n) local a, i; a := []; for i from 1 to n do a := [op(a), ((2*i) mod (n+1))]; od; RETURN(a); end; count_of_disjcyc_seq := [seq(nops(convert(gen_rss_perm(ithprime(j)-1), 'disjcyc')), j=2..)];
MATHEMATICA
a6694[n_] := Sum[ EulerPhi[d] / MultiplicativeOrder[2, d], {d, Divisors[2n + 1]}] - 1; a[n_] := a6694[(Prime[n]-1)/2]; Table[ a[n], {n, 2, 104}] (* Jean-François Alcover, Dec 14 2011, after Vladimir Shevelev *)
Table[p = Prime[n]; (p - 1)/MultiplicativeOrder[2, p], {n, 2, 100}] (* T. D. Noe, Apr 11 2012 *)
ord[n_]:=Module[{x=1}, While[PowerMod[2, x, n]!=1, x++]; (n-1)/x]; ord/@ Prime[ Range[ 2, 110]] (* Harvey P. Dale, Jun 25 2014 *)
PROG
(Magma) [ (p-1)/Modorder(2, p) where p is NthPrime(n): n in [2..100] ]; // Klaus Brockhaus, Dec 09 2008
(PARI) {for(n=2, 100, p=prime(n); print1((p-1)/znorder(Mod(2, p)), ", "))} \\ Klaus Brockhaus, Dec 09 2008
(Python)
from sympy import prime, n_order
def A001917(n):
p = prime(n)
return 1 if n == 2 else (p-1)//n_order(2, p) # Chai Wah Wu, Jan 15 2020
CROSSREFS
Cf. A006694 gives cycle counts of such permutations constructed for all odd numbers.
Cf. A014664.
Sequence in context: A013632 A080121 A122901 * A240545 A091591 A376361
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Antti Karttunen, Jan 05 2000
More terms from N. J. A. Sloane, Dec 24 2009
STATUS
approved