The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001914 Cyclic numbers: 10 is a quadratic residue modulo p and class of mantissa is 2. (Formerly M2940 N1183) 4
 2, 13, 31, 43, 67, 71, 83, 89, 107, 151, 157, 163, 191, 197, 199, 227, 283, 293, 307, 311, 347, 359, 373, 401, 409, 431, 439, 443, 467, 479, 523, 557, 563, 569, 587, 599, 601, 631, 653, 677, 683, 719, 761, 787, 827, 839, 877, 881, 883, 911, 919, 929, 947, 991 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also, apart from first term 2, primes p for which the repunit (A002275) R((p-1)/2)=(10^((p-1)/2)-1)/9 is the smallest repunit divisible by p. Primes for which A000040(n) = 2*A071126(n) + 1. - Hugo Pfoertner, Mar 18 2003, Sep 18 2018 REFERENCES Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966. Pages 65, 309. M. Kraitchik, Recherches sur la ThÃ©orie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Hugo Pfoertner, Table of n, a(n) for n = 1..1180 EXAMPLE The repunit R(6)=111111 is the smallest repunit divisible by the prime a(2)=13=2*6+1. PROG (PARI) R(n)=(10^n-1)/9; print1(2, ", "); forprime(p=3, 1000, m=0; for(q=3, (p-1)/2-1, if(R(q)%p==0, m=1; break)); if(m==0&&R((p-1)/2)%p==0, print1(p, ", "))) \\ Hugo Pfoertner, Sep 18 2018 CROSSREFS Cf. A003277 for another sequence of cyclic numbers. Cf. A000040, A002275, A071126. Sequence in context: A300111 A030452 A132602 * A254447 A031392 A156980 Adjacent sequences:  A001911 A001912 A001913 * A001915 A001916 A001917 KEYWORD nonn AUTHOR EXTENSIONS More terms from Enoch Haga STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 14:21 EDT 2020. Contains 334787 sequences. (Running on oeis4.)