login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001122 Primes with primitive root 2.
(Formerly M2473 N0981)
116
3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Artin conjectured that this sequence is infinite.

Conjecture: sequence contains infinitely many pairs of twin primes. - Benoit Cloitre, May 08 2003

Pieter Moree writes (Oct 20 2004): Assuming the Generalized Riemann Hypothesis, it can be shown that the density of primes p such that a prescribed integer g has order (p-1)/t, with t fixed, exists and, moreover, it can be computed. This density will be a rational number times the so called Artin constant. For 2 and 10 the density of primitive roots is A, the Artin constant itself.

It seems that this sequence consists of A050229 \ {1,2}.

Primes p such that 1/p, when written in base 2, has period p-1, which is the greatest period possible for any integer.

Positive integer 2*m-1 is in the sequence iff A179382(m)=m-1. - Vladimir Shevelev, Jul 14 2010

These are the odd primes p for which the polynomial 1+x+x^2+...+x^(p-1) is irreducible over GF(2). - V. Raman, Sep 17 2012 [Corrected by N. J. A. Sloane, Oct 17 2012]

Prime(n) is in the sequence if (and conjecturally only if) A133954(n) = prime(n). - Vladimir Shevelev, Aug 30 2013

Pollack shows that, on the GRH, that there is some C such that a(n+1) - a(n) < C infinitely often (in fact, 1 can be replaced by any positive integer). Further, for any m, a(n), a(n+1), ..., a(n+m) are consecutive primes infinitely often. - Charles R Greathouse IV, Jan 05 2015

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.

E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I; see p. 221.

J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 169.

M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 56.

Lehmer, D. H. and Lehmer, Emma; Heuristics, anyone? in Studies in mathematical analysis and related topics, pp. 202-210, Stanford Univ. Press, Stanford, Calif., 1962.

D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 81.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

Joerg Arndt, Matters Computational (The Fxtbook), pp. 876-878.

J. Conde, M. Miller, J. M. Miret, K. Saurav, On the Nonexistence of Almost Moore Digraphs of Degree Four and Five, Mathematics in Computer Science, June 2015, Volume 9, Issue 2, pp. 145-149.

K. Dilcher, L. Ericksen, Reducibility and irreducibility of Stern (0, 1)-polynomials, Communications in Mathematics, Volume 22/2014 , pp. 77-102.

R. Gupta and M. R. Murty, A remark on Artin's conjecture, Invent. Math. 78 (1984) 127-230.

C. Hooley, On Artin's conjecture, J. Reine Angewandte Math., 225 (1967) 209-220.

Robert Jackson, Dmitriy Rumynin and Oleg V. Zaboronski, An approach to RAID-6 based on cyclic groups, Applied Mathematics & Information Sciences 5(2) (2011), 148-170.

Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv preprint arXiv:1608.00862 [math.GM], 2016.

Sihem Mesnager and Jean-Pierre Flori, A note on hyper-bent functions via Dillon-like exponents

F. Pillichshammer, Bounds for the quality parameter of digital shift nets over Z_2, Finite Fields Applic., 8 (2002), 444-454.

P. Moree, Artin's primitive root conjecture-a survey, arXiv:math/0412262 [math.NT], 2004-2012.

Paul Pollack, Bounded gaps between primes with a given primitive root, arXiv:1404.4007 [math.NT], 2014.

V. Shevelev,On the Newman sum over multiples of a prime with a primitive or semiprimitive root 2, arXiv:0710.1354 [math.NT], 2007.

D. Williams, Primitive Roots(Check) [link dead as of Jun 27 2011]

Index entries for sequences related to Artin's conjecture

Index entries for primes by primitive root

FORMULA

Delta(a(n),2^a(n)*x) = a(n)*Delta(a(n),2*x), where Delta(k,x) is the difference between numbers of evil(A001969) and odious(A000069) integers divisible by k in interval [0,x). - Vladimir Shevelev, Aug 30 2013

For n >= 2, a(n) = 1 + 2*A163782(n-1). - Antti Karttunen, Oct 07 2017

MATHEMATICA

Select[ Prime@Range@200, PrimitiveRoot@# == 2 &] (* Robert G. Wilson v, May 11 2001 *)

pr = 2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == # - 1 &] (* N. J. A. Sloane, Jun 01 2010 *)

PROG

(PARI) forprime(p=3, 1000, if(znorder(Mod(2, p))==(p-1), print1(p, ", "))); \\ [corrected by Michel Marcus, Oct 08 2014]

CROSSREFS

Cf. A001123, A001913, A001917, A005596 (Artin's constant), A050229, A071642, A163782, A292270.

Cf. A002326 for the multiplicative order of 2 mod 2n+1. (Alternatively, the least positive value of m such that 2n+1 divides 2^m-1).

Cf. A216838 (Odd primes for which 2 is not a primitive root).

Sequence in context: A059646 A003629 A175865 * A152871 A156221 A207325

Adjacent sequences:  A001119 A001120 A001121 * A001123 A001124 A001125

KEYWORD

nonn,easy,nice,changed

AUTHOR

N. J. A. Sloane, Apr 30 1991

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 20 03:05 EDT 2017. Contains 293600 sequences.