login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001919 Eighth column of quadrinomial coefficients.
(Formerly M4234 N1769)
6
6, 40, 155, 456, 1128, 2472, 4950, 9240, 16302, 27456, 44473, 69680, 106080, 157488, 228684, 325584, 455430, 627000, 850839, 1139512, 1507880, 1973400, 2556450, 3280680, 4173390, 5265936, 6594165, 8198880, 10126336, 12428768, 15164952, 18400800, 22209990 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 3..1000

L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.

R. K. Guy, Letter to N. J. A. Sloane, 1987

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).

FORMULA

a(n) = A008287(n, 7) = binomial(n+2, 5)*(n^2+21*n+180 )/42, n >= 3.

G.f.: (x^3)*(6-8*x+3*x^2 )/(1-x)^8. Numerator polynomial is N4(7, x) from array A063421.

a(n) = n(n^2-1)(n^2-4)(n^2+21n+180)/5040. - Emeric Deutsch, Jan 27 2005

a(n) = 6*C(n,3) + 16*C(n,4) + 15*C(n,5) + 6*C(n,6) + C(n,7) (see comment in A071675). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012

a(3)=6, a(4)=40, a(5)=155, a(6)=456, a(7)=1128, a(8)=2472, a(9)=4950, a(10)=9240, a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)- 28*a(n-6)+ 8*a(n-7)-a(n-8). - Harvey P. Dale, Mar 27 2013

MAPLE

seq(n*(n^2-1)*(n^2-4)*(n^2+21*n+180)/5040, n=3..34); # Emeric Deutsch, Jan 27 2005

A001919:=(3*z**2-8*z+6)/(z-1)**8; # conjectured by Simon Plouffe in his 1992 dissertation

MATHEMATICA

Table[n*(n^2 - 1)*(n^2 - 4)*(n^2 + 21*n + 180)/5040, {n, 3, 50}] (* T. D. Noe, Aug 17 2012 *)

LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {6, 40, 155, 456, 1128, 2472, 4950, 9240}, 40] (* Harvey P. Dale, Mar 27 2013 *)

CROSSREFS

Sequence in context: A027777 A227013 A073773 * A342404 A005553 A335232

Adjacent sequences:  A001916 A001917 A001918 * A001920 A001921 A001922

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Emeric Deutsch, Jan 27 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:11 EDT 2021. Contains 343117 sequences. (Running on oeis4.)