OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..450
Anders Claesson, From Hertzsprung's problem to pattern-rewriting systems, University of Iceland (2020).
S. Linton, J. Propp, T. Roby, and J. West, Equivalence classes of permutations under various relations generated by constrained transpositions, 2011 arXiv:1111.3920 [math.CO] J. Int. Seq. 15 (2012) #12.9.1
FORMULA
G.f.: Sum_{k>=0} k! * ( x * (1-x^2)^2/(1-x^3) )^k. - Seiichi Manyama, Feb 20 2024
EXAMPLE
From Alois P. Heinz, May 22 2012: (Start)
a(3) = 4: {123, 132, 213}, {231}, {312}, {321}.
a(4) = 17: {1234, 1243, 1324, 2134}, {1342}, {1423}, {1432}, {2143}, {2314}, {2341, 2431, 3241}, {2413}, {3124}, {3142}, {3214}, {3412}, {3421}, {4123, 4132, 4213}, {4231}, {4312}, {4321}. (End)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^2)^2/(1-x^3))^k)) \\ Seiichi Manyama, Feb 20 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Roby, May 21 2012
EXTENSIONS
a(9) from Alois P. Heinz, May 22 2012
a(10)-a(22) from Alois P. Heinz, Apr 14 2021
STATUS
approved