OFFSET
0,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
E.g.f. log(1 + A(x)) with the e.g.f. A(x):=exp(x/2)*sinh(sqrt(5)*x/2)/(sqrt(5)/2) of A000045.
a(n) ~ -(n-1)! / r^n, where r = -1.37807491378452630283968362340785266756... is the root of the equation 2*(5-3*sqrt(5))*r + (sqrt(5)-5) * (log(5/4) + 2*log(1-coth(sqrt(5)*r/2))) = 0. - Vaclav Kotesovec, Sep 04 2014
MAPLE
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*t(n-j)*
binomial(n, j)*a(j), j=1..n-1)/n))(i->(<<0|1>, <1|1>>^i)[1, 2])
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 06 2018
MATHEMATICA
FullSimplify[CoefficientList[Series[Log[1 + 2*E^(x/2)*Sinh[Sqrt[5]*x/2] / Sqrt[5]], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Sep 04 2014 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Sep 12 2005
STATUS
approved