

A212583


Primes p such that p^2 divides 6^(p1)  1.


6




OFFSET

1,1


COMMENTS

Base 6 Wieferich primes.
Next term > 4.119*10^13. [See Fischer link]


REFERENCES

P. Ribenboim, The New Book of Prime Number Records, SpringerVerlag, 1996, page 347


LINKS

Table of n, a(n) for n=1..3.
François G. Dorais and Dominic Klyve, A Wieferich prime search up to p < 6.7*10^15, J. Integer Seq. 14 (2011), Art. 11.9.2, 114.
Richard Fischer, Thema: Fermatquotient B^P1 == 1 mod (P^2)
Wilfrid Keller and Jörg Richstein, Fermat quotients q_p(a) that are divisible by p.
Eric Weisstein, Fermat Quotient, MathWorld
Wikipedia, Basea Wieferich primes


PROG

(PARI)
N=10^9; default(primelimit, N);
forprime(n=2, N, if(Mod(6, n^2)^(n1)==1, print1(n, ", ")));
\\ Joerg Arndt, May 01 2013


CROSSREFS

Cf. A001220, A014127, A090968, A123692, A123693, A128667, A128668, A128669.
Sequence in context: A170799 A194430 A241978 * A156424 A092376 A251333
Adjacent sequences: A212580 A212581 A212582 * A212584 A212585 A212586


KEYWORD

nonn,hard,bref,more


AUTHOR

Felix Fröhlich, May 22 2012


STATUS

approved



