login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003793
Order of (usually) simple Chevalley group A_n (3).
12
1, 12, 5616, 6065280, 237783237120, 21032402889738240, 67034222101339041669120, 480860607452861427947598643200, 124190524600592082795473760093457612800
OFFSET
0,2
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
LINKS
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Robert Steinberg, Lectures on Chevalley Groups, Dept. of Mathematics, Yale University, 1967, p. 130-131.
FORMULA
a(n) = a(3,n) where a(q,n) = A(q,n) / gcd(n+1, q-1) and A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
MATHEMATICA
f[m_, n_] := Block[{g, x, y}, g[x_, y_] := x^(y (y + 1)/2) Product[x^k - 1, {k, 2, y + 1}]; g[m, n]/GCD[n + 1, m - 1]]; f[3, #] & /@ Range[0, 8] (* Michael De Vlieger, Sep 18 2015 *)
CROSSREFS
Sequence in context: A229669 A013508 A230749 * A171669 A094268 A208865
KEYWORD
nonn,easy
STATUS
approved