login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308351
For n >= 2, a(n) = n*u(n-1) + n*(n-1)*u(n-2), where u = A292932; a(1)=1.
1
1, 4, 18, 128, 1090, 11232, 134806, 1849696, 28550538, 489656720, 9237631150, 190115847792, 4238752713442, 101775333547552, 2618244556598310, 71846664091504064, 2094748778352174202, 64666725024407102064, 2107224874854168508126, 72279858915240296971600
OFFSET
1,2
LINKS
M. Couceiro, J. Devillet, All quasitrivial n-ary semigroups are reducible to semigroups, arXiv:1904.05968 [math.RA], 2019.
FORMULA
a(n) = n*A292932(n-1) + n*(n-1)*A292932(n-2) = A292933(n) + n*A292933(n-1) for n >= 2.
E.g.f.: x*(1 + x)/(3 - 2*exp(x) + x). - Vaclav Kotesovec, Jun 05 2019
a(n) ~ n! * (r-2) / ((r-1) * (r-3)^n), where r = -LambertW(-1, -2*exp(-3)). - Vaclav Kotesovec, Jun 05 2019
MAPLE
E:= x*(1 + x)/(3 - 2*exp(x) + x):
S:= series(E, x, 51):
seq(coeff(S, x, n)*n!, n=1..50); # Robert Israel, Nov 26 2020
MATHEMATICA
nmax = 20; Rest[CoefficientList[Series[x*(1 + x)/(3 - 2*E^x + x), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Jun 05 2019 *)
CROSSREFS
Sequence in context: A073511 A108704 A001423 * A291335 A158341 A144272
KEYWORD
nonn,easy
AUTHOR
J. Devillet, May 21 2019
STATUS
approved