

A007581


a(n) = (2^n+1)*(2^n+2)/6.
(Formerly M1479)


39



1, 2, 5, 15, 51, 187, 715, 2795, 11051, 43947, 175275, 700075, 2798251, 11188907, 44747435, 178973355, 715860651, 2863377067, 11453377195, 45813246635, 183252462251, 733008800427, 2932033104555, 11728128223915
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Number of palindromic structures using a maximum of four different symbols.  Marks R. Nester
Dimension of the universal embedding of the symplectic dual polar space DSp(2n,2) (conjectured by A. Brouwer, proved by P. Li).  J. Taylor (jt_cpp(AT)yahoo.com), Apr 02 2004.
Apart from initial term, same as A124303.  Valery A. Liskovets, Nov 16 2006
Hankel transform is := [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...].  Philippe Deléham, Dec 04 2008
a(n) is also the number of distinct solutions (avoiding permutations) to the equation: XOR(A,B,C)=0 where A,B,C are nbit binary numbers.  Ramasamy Chandramouli, Jan 11 2009
The rank of the fundamental group of the Z_p^n  cobordism category in dimension 1+1 for the case p=2 (see paper below). The expression for any prime p is (p^(2n1)+p^(n+1)p^(n1)+p^2p1)/(p^21).  Carlos Segovia, Dec 05 2012
The number of isomorphic classes of regular four coverings of a graph with respect to the identity automorphism (S. Hong and J. H. Kwak).  Carlos Segovia, Aug 01 2013
The density of a language with four letters (N. Moreira and R. Reis).  Carlos Segovia, Aug 01 2013


REFERENCES

P. Li, On the Brouwer Conjecture for Dual Polar Spaces of Symplectic Type over GF(2). Preprint.
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Carlos Segovia and Monika Winklmeier, On the density of certain languages with p^2 letters, Electronic Journal of Combinatorics 22(3) (2015), #P3.16
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n=0..200
Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
A. Blokhuis and A. E. Brouwer, The universal embedding dimension of the binary symplectic dual polar space, Discr. Math., 264 (2003), 311.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
B. N. Cooperstein and E. E. Shult, A note on embedding and generating dual polar spaces. Adv. Geom. 1 (2001), 3748.
A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, The Tower of Hanoi  Myths and Maths, Birkhäuser 2013. See page 183. Book's website
S. Hong and J. H. Kwak, Regular fourfold covering with respect to the identity automorphism, J. Graph Theory, 17 (1993), 621627.
Masashi Kosuda and Manabu Oura, Centralizer algebras of the primitive unitary reflection group of order 96, arXiv preprint, 2015.
George S. Lueker, Improved Bounds on the Average Length of Longest Common Subsequences (Jul 22, 2005) (Fig.1).
N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
C. Segovia, Unexpected relations of cobordism categories with another [sic] subjects in mathematics, 2013.
C. Segovia, Unexpected relations of cobordism categories with another [sic] subjects in mathematics, talk in China 2014.
C. Segovia, The classifying space of the 1+1 dimensional $G$cobordism category, arXiv:1211.2144, Nov 09 2012.
C. Segovia, Numerical computations in cobordism categories, arXiv:1307.2850.
C. Segovia, Counting words with vector spaces.
C. Segovia, M. Winklmeier, Combinatorial Computations in Cobordism Categories, arXiv preprint arXiv:1409.2067, 2014
Index entries for linear recurrences with constant coefficients, signature (7,14,8).


FORMULA

a(n) = (3*2^(n1) + 2^(2*n1) + 1)/3.
a(n) = Sum_{k=1..4} stirling2(n, k).  Winston Yang (winston(AT)cs.wisc.edu), Aug 23 2000
Binomial transform of 3^n/6+1/2+0^n/3, i.e. of A007051 with an extra leading 1. a(n)= binomial(2^n+2, 2^n1)/2^n.  Paul Barry, Jul 19 2003
a(n) = C(2+2^n, 3)/2^n = a(n1)+2^(n1)+4^(n3/2) = A092055(n)/A000079(n).  Henry Bottomley, Feb 19 2004
Second binomial transform of A001045(n1)+0^n/2. G.f.: (15*x+5*x^2)/((1x)*(12*x)*(14*x)).  Paul Barry, Apr 28 2004
a(n) is the top entry of the vector M^n*[1,1,1,1,0,0,0,...], where M is an infinite bidiagonal matrix with M(r,r)=r, r>=1, as the main diagonal, M(r,r+1)=1, and the rest zeros. ([1,1,1,..] is a column vector and transposing gives the same in terms of a leftmost column term.)  Gary W. Adamson, Jun 24 2011
a(0)=1, a(1)=2, a(2)=5, a(n)=7*a(n1)14*a(n2)+8*a(n3).  Harvey P. Dale, Jul 24 2011
E.g.f.: (exp(2*x) + 1/3*exp(4*x) + 2/3*exp(x))/2 = G(0)/2; G(k)=1 + (2^k)/(3  6/(2 + 4^k  3*x*(8^k)/(3*x*(2^k) + (k+1)/G(k+1)))); (continued fraction).  Sergei N. Gladkovskii, Dec 08 2011


MAPLE

A007581:=n>(2^n+1)*(2^n+2)/6; seq(A007581(n), n=0..50); # Wesley Ivan Hurt, Nov 25 2013


MATHEMATICA

Table[(3*2^(n1)+2^(2n1)+1)/3, {n, 0, 30}] (* or *) LinearRecurrence[ {7, 14, 8}, {1, 2, 5}, 31] (* Harvey P. Dale, Jul 24 2011 *)


PROG

(PARI) a(n)=(3*2^(n1)+2^(2*n1)+1)/3; \\ Charles R Greathouse IV, Jun 24 2011
(PARI) a(n)=if(n==0, 1, (2<<(2*n))\/3+2^n); \\ Charles R Greathouse IV, Jun 24 2011


CROSSREFS

Cf. A056272, A056273, A007051, A000392, A056450, A028401, A060919.
A row of the array in A278984.
Sequence in context: A149953 A149954 A149955 * A124303 A073525 A007317
Adjacent sequences: A007578 A007579 A007580 * A007582 A007583 A007584


KEYWORD

nonn,easy,nice


AUTHOR

Simon Plouffe and N. J. A. Sloane


STATUS

approved



