login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007579 Number of Young tableaux of height <= 6.
(Formerly M1217)
12
1, 1, 2, 4, 10, 26, 76, 231, 756, 2556, 9096, 33231, 126060, 488488, 1948232, 7907185, 32831370, 138321690, 593610420, 2579109780, 11377862340, 50726936820, 229078351992, 1043999256966, 4810194384348, 22340617618860, 104742353862360, 494547143860035 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also the number of n-length words w over 6-ary alphabet {a1,a2,...,a6} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,a6), where #(z,x) counts the letters x in word z. - Alois P. Heinz, May 30 2012

REFERENCES

F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Alon Regev, Amitai Regev, Doron Zeilberger, Identities in character tables of S_n, arXiv preprint arXiv:1507.03499, 2015

Index entries for sequences related to Young tableaux.

FORMULA

a(n) ~ 3/4 * 6^(n+15/2)/(Pi^(3/2)*n^(15/2)). - Vaclav Kotesovec, Sep 11 2013

MAPLE

h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j

      +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)

    end:

g:= proc(n, i, l) option remember;

      `if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0,

        g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))

    end:

a:= n-> g(n, 6, []):

seq(a(n), n=0..30); # Alois P. Heinz, Apr 18 2012

# second Maple program:

a:= proc(n) option remember;

      `if`(n<4, [1, 1, 2, 4][n+1], ((20*n^2+184*n+336)*a(n-1)

       +4*(n-1)*(10*n^2+58*n+33)*a(n-2) -144*(n-1)*(n-2)*a(n-3)

       -144*(n-1)*(n-2)*(n-3)*a(n-4))/ ((n+5)*(n+8)*(n+9)))

    end:

seq(a(n), n=0..30);  # Alois P. Heinz, Oct 12 2012

MATHEMATICA

RecurrenceTable[{144 (-3+n) (-2+n) (-1+n) a[-4+n]+144 (-2+n) (-1+n) a[-3+n]-4 (-1+n) (33+58 n+10 n^2) a[-2+n]-4 (84+46 n+5 n^2) a[-1+n]+(5+n) (8+n) (9+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10}, a, {n, 20}] (* Vaclav Kotesovec, Sep 11 2013 *)

CROSSREFS

Column k=6 of A182172. - Alois P. Heinz, May 30 2012

Sequence in context: A049401 A239077 A148099 * A239078 A007123 A220871

Adjacent sequences:  A007576 A007577 A007578 * A007580 A007581 A007582

KEYWORD

nonn

AUTHOR

Simon Plouffe

EXTENSIONS

More terms from Alois P. Heinz, Apr 10 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 23 06:11 EDT 2017. Contains 290958 sequences.