The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124303 Number of set partitions of length <= 4; sum of first 4 columns of triangle of Stirling numbers of 2nd kind; dimension of space of symmetric polynomials in 4 noncommuting variables. 11
 1, 1, 2, 5, 15, 51, 187, 715, 2795, 11051, 43947, 175275, 700075, 2798251, 11188907, 44747435, 178973355, 715860651, 2863377067, 11453377195, 45813246635, 183252462251, 733008800427, 2932033104555, 11728128223915, 46912504507051, 187650001250987 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Apart from initial term, same as A007581. - Valery A. Liskovets, Nov 16 2006 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order" N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math/0502082 [math.CO], 2005; Canad. J. Math. 60 (2008), no. 2, 266-296. M. Rosas and B. Sagan, Symmetric Functions in Noncommuting Variables, Transactions of the American Mathematical Society, 358 (2006), no. 1, 215-232. Index entries for linear recurrences with constant coefficients, signature (7,-14,8). FORMULA O.g.f.: (3*q^3 - 9*q^2 + 6*q - 1)/(8*q^3 - 14*q^2 + 7*q - 1) = Sum_{k=0..4} (q^k/Product_{i=1..k} (1-i*q)). a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3); a(0) = 1, a(1) = 1, a(2) = 2, a(3) = 5, a(n) = Sum_{k=1..4} A008277(n,k). a(n) = (8 + 3*2^(1+n) + 4^n) / 24 for n>0. - Colin Barker, Nov 03 2017 a(n) = Sum_{k=0..4} Stirling2(n,k). - Robert A. Russell, Mar 29 2018 G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=4. - Robert A. Russell, Apr 25 2018 E.g.f.: (9 + 8*exp(x) + 6*exp(2*x) + exp(4*x))/24. - Peter Luschny, Nov 06 2018 EXAMPLE Number of set partitions of {1,2,3,4,5,6} are given by A008277(6,k) = 1, 31, 90, 65, 15, 1 and hence a(6) = 1+31+90+65 = 187. MAPLE a:=proc(n); if n<4 then [1, 1, 2, 5][n+1]; else 7*a(n-1)-14*a(n-2)+8*a(n-3); fi; end: MATHEMATICA Join[{1}, LinearRecurrence[{7, -14, 8}, {1, 2, 5}, 26]] (* Jean-François Alcover, Nov 20 2017 *) Table[Sum[StirlingS2[n, k], {k, 0, 4}], {n, 0, 40}] (* Robert A. Russell, Mar 29 2018 *) PROG (PARI) Vec((1 - 6*x + 9*x^2 - 3*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 03 2017 CROSSREFS Cf. A124292, A000110, A008277. A row of the array in A278984. Sequence in context: A149954 A149955 A007581 * A073525 A007317 A181768 Adjacent sequences:  A124300 A124301 A124302 * A124304 A124305 A124306 KEYWORD nonn,easy AUTHOR Mike Zabrocki, Oct 25 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 23:52 EDT 2021. Contains 343156 sequences. (Running on oeis4.)