This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248925 Triangle in which row n consists of the coefficients in Sum_{m=0..n} x^m * Product_{k=m+1..n} (1-k*x), as read by rows. 8
 1, 1, 0, 1, -2, 1, 1, -5, 7, -2, 1, -9, 27, -30, 9, 1, -14, 72, -165, 159, -44, 1, -20, 156, -597, 1149, -998, 265, 1, -27, 296, -1689, 5328, -9041, 7251, -1854, 1, -35, 512, -4057, 18840, -51665, 79579, -59862, 14833, 1, -44, 827, -8665, 55353, -221225, 544564, -776073, 553591, -133496 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS If m=n, we have Sum_{k=0..n} A008277(n, k) = A000110(n) = Sum_{j=0..n} T(n,j)*A008277(2n-j,n) where A000110(n) is the n-th Bell number. - Robert A. Russell, Apr 08 2018 LINKS FORMULA Right border equals A000166, the subfactorial numbers. Row sums equal A000166 (shift right 1 place). Row sums of unsigned terms yields A002467(n) = n! - A000166(n). Sum_{k=0..n} A008277(m, k) = Sum_{j=0..n} T(n, j)*A008277(m+n-j, n) where A008277(m, k) are Stirling subset numbers. - Robert A. Russell, Mar 30 2018 T(n,0) = 1. For k>0, T(n,k) = [k==n] + [k

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 12:41 EDT 2019. Contains 327113 sequences. (Running on oeis4.)