This site is supported by donations to The OEIS Foundation.

CiteSl

From OeisWiki
Jump to: navigation, search


"This continued fraction ought to be classical, but the first mention of which I am aware is a 2006 contribution to the OEIS by an amateur mathematician, Paul D. Hanna, who found it empirically; it was proven a few years later by Josuat-Vergès [49] by a combinatorial method (which also yields a q-generalization)." [Alan D. Sokal, 2018]

"This work was immeasurably facilitated by the On-Line Encyclopedia of Integer Sequences [16]. I warmly thank Neil Sloane for founding this indispensable resource, and the hundreds of volunteers for helping to maintain and expand it." [Alan D. Sokal, 2019]

"Using the On-Line Encyclopedia of Integer Sequences (OEIS), we have seen that quite different sequences can have the same binary operators. We have also found integer sequences not given in OEIS and that need to be studied." [Amelia Carolina Sparavigna, 2019]

"There is a Web Page: <https://oeis.org/> by N.J.A. Sloane. It tells, from typing the first few terms of a sequence, whether that sequence has occurred somewhere else in Mathematics. Postgraduate student Daniel Steffen traced this down and found, to our surprise, that the sequence was related to the tangent function tan x. Ryan and Tam searched out what was known about this connection and discovered some apparently new results. We all found this a lot of fun and I hope you will too." [Ross Street, 2015]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Sl to Sz.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Paul B. Slater, Eigenvalues, Separability and Absolute Separability of Two-Qubit States (2008); arXiv:0805.0267
  2. Paul B. Slater, Formulas for Generalized Two-Qubit Separability Probabilities, arXiv:1609.08561 2016.
  3. Paul B. Slater, Hypergeometric/Difference-Equation-Based Separability Probability Formulas and Their Asymptotics for Generalized Two-Qubit States Endowed with Random Induced Measure, preprint arXiv:1504.04555, 2015. (A004523, A232007)
  4. Peter J. Slater, It Is All Labeling, In: Gera R., Hedetniemi S., Larson C. (eds) Graph Theory. Problem Books in Mathematics. Springer, 2016, doi:10.1007/978-3-319-31940-7_6
  5. Michael C. Slattery, Groups with at most twelve subgroups, arXiv preprint arXiv:1607.01834, 2016
  6. Richard M. Slevinsky, On the use of Hahn's asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform, arXiv preprint arXiv:1602.02618, 2016
  7. Arkadii Slinko, Algebra for Applications: Cryptography, Secret Sharing, Error-Correcting, Fingerprinting, Compression, Springer 2015.
  8. N. J. A. Sloane, A handbook of integer sequences, Academic Press (1973)
  9. N. J. A. Sloane, An on-line version of "The Encylopedia of Integer Sequences", Electron. J. Comb. 1 (1994) 179-183
  10. N. J. A. Sloane, The Sphere Packing Problem, Proceedings Internat. Congress Math. Berlin 1998, Documenta Mathematika, III (1998), pp. 387-396. (pdf)
  11. N. J. A. Sloane, My Favorite Integer Sequences, in Sequences and their Applications (Proceedings of SETA '98), C. Ding, T. Helleseth and H. Niederreiter (editors), Springer-Verlag, London, 1999, pp. 103-130.
  12. N. J. A. Sloane, On Single-Deletion Correcting Codes, in K. T. Arasu and A. Seress, eds., Codes and Designs, Ohio State University, May 2000 (Ray-Chaudhuri Festschrift), Walter de Gruyter, Berlin, 2002, pp. 273-291.
  13. N. J. A. Sloane, The Sphere-Packing Problem (2002), arXiv:math/0207256.
  14. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (2003), arXiv:math/0312448; Notices Amer. Math. Soc., 50 (September 2003), pp. 912-915.
  15. N. J. A. Sloane, arXiv:0912.2394 Seven Staggering Sequences.
  16. N. J. A. Sloane, Gleason's theorem on self-dual codes and its generalizations (talk given at Conference on Algebraic Combinatorics in honor of Eiichi Bannai, Sendai, Japan, June 2006).
  17. N. J. A. Sloane, Eight Hateful Sequences, arXiv:0805.2128 (2008)
  18. N. J. A. Sloane, 2178 And All That, PDF and Fibonacci Q. 52 (2) (2014) 99-120
  19. N. J. A. Sloane, The on-line encyclopedia of integer sequences, Ann. Math. Inform. 41 (2013) 219-234
  20. N. J. A. Sloane, 2178 And All That, Video of talk given in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Oct. 10 2013: <a href="https://vimeo.com/76725343">Part 1</a>, <a href="https://vimeo.com/77255410">Part 2</a>.
  21. N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
  22. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Notices, Amer. Math. Soc., 65 (No. 9, Oct. 2018), 1062-1074 doi:10.1090/noti1734. Reprinted in "The Best Writing on Mathematics 2019", ed. M. Pitici, Princeton Univ. Press, 2019, pp. 90-119 and colored illustrations following page 80.
  23. N. J. A. Sloane and Parthasarathy Nambi, Integer Sequences Related to Chemistry, pdf, Poster presented at the Amer. Chem. Soc. National Meeting, San Francisco, Fall 2006.
  24. N. J. A. Sloane and J. A. Sellers, arXiv:math.CO/0312418 On non-squashing partitions], Discrete Math., 294 (2005), no. 3, 259-274.
  25. N. J. A. Sloane and Thomas Wieder, arXiv:math.CO/0307064 The Number of Hierarchical Orderings, arXiv:math.CO/0307064, also doi:10.1007/s11083-004-9460-9 Orderings, Order 21 (2004), no. 1, 83-89.
  26. Slomczynska, Katarzyna Free spectra of linear equivalential algebras. J. Symbolic Logic 70 (2005), no. 4, 1341-1358.
  27. Michael Small, C.K. Tse, David M. Walker, Super-spreaders and the rate of transmission of the SARS virus, Physica D: Nonlinear Phenomena, Volume 215, Issue 2, 15 March 2006, Pages 146-158.
  28. F. Smarandache, arXiv:math.GM/0010137 Another Set of Sequences, Sub-Sequences and Sequences of Sequences, Partially published in "Only Problems, Not Solutions!", by Florentin Smarandache, Xiquan Publ. Hse., Phoenix, 1991.
  29. F. Smarandache, arXiv:math.GM/0010132 Considerations on New Functions in Number Theory, Partially inlcuded in the book "Noi Functii in Teoria Numerelor", by Florentin Smarandache, University of Kishinev Press, 120 p., 1999.
  30. F. Smarandache, arXiv:math.GM/0010125 A Set of Sequences in Number Theory], Presented to the Pedagogical High School Student Conference in Craiova, 1972. "Collected Papers", Vol. II, book by Florentin Smarandache, University of Kishinev Press, Kishinev, 200 p., 1997.
  31. F. Smarandache, arXiv:math.GM/0010151 G Add-On, Digital, Sieve, General Periodical and Non-Arithmetic Sequences.
  32. Florentin Smarandache, Numerology (2000), arXiv:math.GM/0010132.
  33. Florentin Smarandache, Sequences of Numbers Involved in Unsolved Problems (2006), arXiv:math.GM/0604019.
  34. F. Smarandache, Generalization and alternatives of Kaprekar's routine, arXiv:1005.3235
  35. Florentin Smarandache, Jean Dezert, An Introduction to the DSm Theory for the Combination of Paradoxical, Uncertain and Imprecise Sources of Information (2006), arXiv:cs/0608002.
  36. Florentin Smarandache, Jean Dezert, The Combination of Paradoxical, Uncertain and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference, arXiv:cs/0412091 (2004)
  37. YOTAM SMILANSKY AND YAAR SOLOMON, MULTISCALE SUBSTITUTION TILINGS, arXiv:2003.11735, Mar 26 2020
  38. David M. Smith, Geoffrey Smith, Tight Bounds on Information Leakage from Repeated Independent Runs, 2017 IEEE 30th Computer Security Foundations Symposium (CSF). doi:10.1109/CSF.2017.18
  39. Hanson Smith, Ramification in the Division Fields of Elliptic Curves and an Application to Sporadic Points on Modular Curves, arXiv:1808.04809 [hep-th], 2018. (A085548)
  40. Jason P. Smith, A Formula for the Mobius function of the Permutation Poset Based on a Topological Decomposition, arXiv preprint arXiv:1506.04406, 2015
  41. K. W. Smith, KWSnet Mathematics Index, 2015; http://www.kwsnet.com/science-mathematics.html
  42. Barry R. Smith, Reducing quadratic forms by kneading sequences, J. Int. Seq. 17 (2014) 14.11.8.
  43. Jason P. Smith, The poset of graphs ordered by induced containment, arXiv:1806.01821 [math.CO], 2018. (A088617)
  44. R. Smith and V. Vatter, A stack and a pop stack in series, arXiv preprint arXiv:1303.1395, 2013
  45. V. N. Smith and L. Shapiro, Catalan numbers, Pascal's triangle and mutators, Congressus Numerant., 205 (2010), 187-197.
  46. Barbara Smoleń, Roman Wituła, Two-parametric quasi-Fibonacci numbers, Silesian J. Pure Appl. Math. (2017), Vol. 7, Is. 1, pp. 99-121. PDF (A000045, A001519, A001906, A014445, A015448, A020699, A028495, A030191, A052975, A074872, A081567, A081568, A081569, A081571, A081574, A094831, A096976, A099453, A120757, A122100, A123941, A124292, A147704, A163073, A163306, A181879, A188168)
  47. C. Smyth, The terms in Lucas sequences divisible by their indices, J. Int. Seq. 13 (2010) 10.2.4
  48. Snellman, Jan, Standard paths in another composition poset. Electron. J. Combin. 11 (2004), no. 1, Research Paper 76, 8 pp.
  49. Jan Snellman, Digraphs with a fixed number of edges and vertices, having a maximal number of walks of length 2 (2008); arXiv:0804.4655
  50. Jan Snellman and Michael Paulsen, "Enumeration of Concave Integer Partitions", J. Integer Sequences, Volume 7, 2004, Article 04.1.3.
  51. Marie A. Snipes, LA Ward, Harmonic measure distributions of planar domains: a survey, The Journal of Analysis, December 2016, Volume 24, Issue 2, pp 293–330.
  52. Aaron Snook, Augmented Integer Linear Recurrences, http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-program/2012/theses/snook.pdf, 2012.
  53. D. R. Snow, Problems and Remarks, 18th International Symposium on Functional Equations, 1980, Remark 18. (ps, pdf)
  54. E. V. K. Sobolev, A survey of the cell-growth problem and some its variations, preprint, Mar. 2001.
  55. Joram Soch, Expressing the Indefinite Integral of the Standard Normal Probability Density Function, arXiv preprint arXiv:1512.04858, 2015
  56. Joram Soch, Linear Algebraic Number Theory, Part I: Foundations, arXiv:1709.05959 [math.GM], 2017.
  57. Edwin Soedarmadji, Latin hypercubes and MDS codes, Discrete Mathematics, Volume 306, Issue 12, 28 June 2006, Pages 1232-1239.
  58. Anthony Sofo, Fibonacci and Some of His Relations
  59. Takehide Soh, Packing Consequtive Squares into a Sqaure (sic), Kobe University (Japan, 2019). PDF (A005842)
  60. A. D. Sokal, The leading root of the partial theta function, arXiv:1106.1003, 2011, and Adv. Math. 229, No. 5, 2603-2621 (2012).
  61. Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018. (A000111, A000464, A001586, A085734, A088874, A098906) "This continued fraction ought to be classical, but the first mention of which I am aware is a 2006 contribution to the OEIS by an amateur mathematician, Paul D. Hanna, who found it empirically; it was proven a few years later by Josuat-Vergès [49] by a combinatorial method (which also yields a q-generalization)."
  62. Alan D. Sokal, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08919 [math.CO], 2018. (A260492)
  63. Alan D. Sokal, A remark on the enumeration of rooted labeled trees, arXiv:1910.14519, Oct. 2019; at https://arxiv.org/pdf/1910.14519.pdf. ["This work was immeasurably facilitated by the On-Line Encyclopedia of Integer Sequences [16]. I warmly thank Neil Sloane for founding this indispensable resource, and the hundreds of volunteers for helping to maintain and expand it."]
  64. Alan D. Sokal, A remark on the enumeration of rooted labeled trees, arXiv:1910.14519 [math.CO], 2019. (A071207, A232006) This work was immeasurably facilitated by the On-Line Encyclopedia of Integer Sequences. I warmly thank Neil Sloane for founding this indispensable resource, and the hundreds of volunteers for helping to maintain and expand it.
  65. Alpha Soko, James Makungu, Soliton Distribution in the Ball and Box Cellular Automation Model, American Journal of Mathematical and Computer Modelling (2019) Vol. 4, Issue 1, 27-30. doi:10.11648/j.ajmcm.20190401.14
  66. Patrick Sole and Michel Planat, THE ROBIN INEQUALITY FOR 7-FREE INTEGERS, INTEGERS, 2011, #A65; http://www.emis.de/journals/INTEGERS/papers/l65/l65.pdf
  67. Fernando Soler-Toscano and Hector Zenil, A Computable Measure of Algorithmic Probability by Finite Approximations with an Application to Integer Sequences, arXiv:1504.06240 [cs.IT], 2017.
  68. Allan I. Solomon, Gerard Duchamp, Pawel Blasiak et al., Normal Order: Combinatorial Graphs (2004), arXiv:quant-ph/0402082.
  69. A. I. Solomon, C.-L. Ho and G. H. E. Duchamp, Degrees of entanglement for multipartite systems, Arxiv preprint arXiv:1205.4958, 2012
  70. N. Solomon, S. Solomon, A natural extesion of Catalan numbers, JIS 11 (2008) 08.3.5.
  71. Liam Solus, Simplices for Numeral Systems, arXiv:1706.00480 [math.CO], 2017.
  72. Liam Solus, Local h*-Polynomials of Some Weighted Projective Spaces, arXiv:1807.08223 [math.CO], 2018. (A002301)
  73. Steven E. Sommars and Tim Sommars, "The Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon", J. Integer Sequences, Volume 1, 1998, Article 98.1.5.
  74. Michael Somos, A Multisection of q-Series, http://cis.csuohio.edu/~somos/multiq.pdf (A007325, A108483, A058531)
  75. Michael Somos, A Remarkable eta-product Identity, http://cis.csuohio.edu/~somos/retaprod.html (A143751, A058728)
  76. Jonathan Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi) (2005), arXiv:math.NT/0508042.
  77. Sondow, Jonathan, A geometric proof that e is irrational and a new measure of its irrationality. Amer. Math. Monthly 113 (2006), no. 7, 637-641.
  78. Jonathan Sondow, Which Partial Sums of the Taylor Series for e are Convergents to e? (and a Link to the Primes 2, 5, 13, 37, 463, ...) with an Appendix by Kyle Schalm (2007), arXiv:0709.0671.
  79. Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635.
  80. Sondow, Jonathan; and Hadjicostas, Petros, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant. J. Math. Anal. Appl. 332 (2007), no. 1, 292-314.
  81. J. Sondow and K. MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdős-Moser equation, Amer. Math. Monthly, 124 (2017)232-240. doi:10.4169/amer.math.monthly.124.3.232
  82. J. Sondow, J. W. Nicholson and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, Arxiv preprint arXiv:1105.2249, 2011. J. Integer Seq. 14 (2011) Article 11.6.2.
  83. J. Sondow, E. Tsukerman, The p-adic Order of Power Sums, the Erdos-Moser Equation, and Bernoulli Numbers, arXiv preprint arXiv:1401.0322, 2014.
  84. Nikki Sonenberg, Peter G. Taylor, Networks of interacting stochastic fluid models with infinite and finite buffers, Queueing Systems (2019) Vol. 92, Issue 3–4, 293–322. doi:10.1007/s11134-019-09619-w
  85. Chunwei Song, Bowen Yao, On Combinatorial Rectangles with Minimum ∞-Discrepancy, arXiv:1909.05648 [math.CO], 2019. (A002896)
  86. H.-Y. Song and J. B. Lee, On (n,k)-sequences, Discrete Appl. Math. 105, No.1-3, 183-192 (2000).
  87. Eric Sopena, i-Mark: A new subtraction division game, arXiv:1509.04199, 2015
  88. Henrik Kragh Sørensen, “The End of Proof”? The Integration of Different Mathematical Cultures as Experimental Mathematics Comes of Age, in Mathematical Cultures, pp 139-160 (2016); doi:10.1007/978-3-319-28582-5_9
  89. J. Sorenson, J. Webster, Strong pseudoprimes to twelve prime bases, arXiv:1509.00864. See first page.
  90. Jonathan P. Sorenson, Jonathan Webster, Two Algorithms to Find Primes in Pattern, arXiv:1807.08777 [math.NT], 2018. (A005602, A007508, A050258)
  91. Øystein Sørensen, Marta Crispino, Qinghua Liu, Valeria Vitelli, BayesMallows: An R Package for the Bayesian Mallows Model, arXiv:1902.08432 [stat.CO], 2019.
  92. Brianna Sorenson, Jonathan P Sorenson, Jonathan Webster, An Algorithm and Estimates for the Erdős-Selfridge Function (work in progress), arXiv:1907.08559 [math.NT], 2019. (A003458)
  93. José Ezequiel Soto Sánchez, Asla Medeiros e Sá, Luiz Henrique de Figueiredo, Acquiring periodic tilings of regular polygons from images, The Visual Computer (2019) Vol. 35, Issue 6–8, 899–907. doi:10.1007/s00371-019-01665-y (A299780)
  94. Jakub Souček, Ondrej Janíčko, Reverse Fibonacci sequence and its description, (2019). PDF (A057084)
  95. Soulé, Christophe (13 Feb 2008). “Le triangle de Pascal et ses propriétés”. 
  96. Richard Southwell and Jianwei Huang, Complex Networks from Simple Rewrite Systems, Arxiv preprint arXiv:1205.0596, 2012
  97. C. A. Souza-Filho, A. F. Macedo-Junior, A. M. S. Macedo, A hypergeometric generating function approach to charge counting statistics in ballistic chaotic cavities, J. Phys. A: Math. Theor. 47 (2014); 105102 doi:10.1088/1751-8113/47/10/105102.
  98. Yüksel Soykan, Gaussian Generalized Tetranacci Numbers, arXiv:1902.03936 [math.NT], 2019. (A000078, A073817)
  99. Yüksel Soykan, Tetranacci and Tetranacci-Lucas Quaternions, arXiv:1902.05868 [math.RA], 2019. (A000078, A073817)
  100. Yüksel Soykan, On Generalized Pentanacci and Gaussian Generalized Pentanacci Numbers, Preprints (2019). doi:10.20944/preprints201906.0110.v1 (A001591)
  101. Yüksel Soykan, Matrix Sequences of Tetranacci and Tetranacci-Lucas Numbers, Zonguldak Bülent Ecevit University (Zonguldak, Turkey), Preprints (2019), 2019070205. doi:10.20944/preprints201907.0205.v1 (A000078, A073817)
  102. Yüksel Soykan, On A Generalized Pentanacci Sequence, Asian Research Journal of Mathematics (2019) Vol. 14, No. 3, 1-9. doi:10.9734/ARJOM/2019/v14i330129 (A001591, A074048)
  103. Yüksel Soykan, On Generalized Third-Order Pell Numbers, Asian Journal of Advanced Research and Reports (2019) Vol. 6, No. 1, Article No. AJARR.51635, 1-18. doi:10.9734/AJARR/2019/v6i130144 (A000129, A077939, A077997, A276225)
  104. Yüksel Soykan, Summing Formulas For Generalized Tribonacci Numbers, arXiv:1910.03490 [math.GM], 2019. (A000073, A000931, A001608, A001644, A057597, A066983, A072328, A073145, A077939, A077947, A077978, A077997, A078012, A078049, A078712, A128587, A159284, A176971, A226308, A276225, A276228)
  105. Yüksel Soykan, On Summing Formulas For Generalized Fibonacci and Gaussian Generalized Fibonacci Numbers, Advances in Research (2019) Vol. 20, No. 2, 1-15, Article AIR.51824. doi:10.9734/AIR/2019/v20i230154 (A000032, A000045, A000129, A001045, A002203, A014551)
  106. Yüksel Soykan, A Study of Generalized Fourth-Order Pell Sequences, Journal of Scientific Research & Reports (2019) Vol. 25, No. 1, 1-18, Article No. JSRR.52074. doi:10.9734/JSRR/2019/v25i1-230177 (A103142, A190139, A331413)
  107. Yüksel Soykan, On Hyperbolic Numbers With Generalized Fibonacci Numbers Components, Zonguldak Bülent Ecevit University (Turkey, 2019). doi:10.13140/RG.2.2.19903.87207 (A000032, A000045)
  108. Yüksel Soykan, Summation Formulas for Generalized Tetranacci Numbers, Asian Journal of Advanced Research and Reports (2019) Vol. 7, No. 2, Article No. AJARR.52434, 1-12. doi:10.9734/AJARR/2019/v7i230170 (A000078, A073817, A103142, A226309)
  109. Yüksel Soykan, Sum Formulas for Generalized Fifth-Order Linear Recurrence Sequences, Journal of Advances in Mathematics and Computer Science (2019) Vol. 34, No. 5, 1-14. doi:10.9734/JAMCS/2019/v34i530224 (A001591, A074048, A141488, A226310, A226311)
  110. Yüksel Soykan, On generalized sixth-order Pell sequences, Journal of Scientific Perspectives (2020) Vol. 4, No. 1, 49-70. doi:10.26900/jsp.4.005 (A000129)
  111. Yüksel Soykan, Generalized Fibonacci Numbers: Sum Formulas, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 1, 89-104. doi:10.9734/jamcs/2020/v35i130241 (A000032, A000045, A000129, A001045, A002203, A014551)
  112. Yüksel Soykan, Closed Formulas for the Sums of Squares of Generalized Fibonacci Numbers, Asian Journal of Advanced Research and Reports (2020) Vol. 9, No. 1, 23-39, Article no. AJARR.55441. doi:10.9734/AJARR/2020/v9i130212 (A000032, A000045, A000129, A001045, A002203, A014551)
  113. Yüksel Soykan, Mehmet Gümüş, Melih Göcen, A Study On Dual Hyperbolic Generalized Pell Numbers, Zonguldak Bülent Ecevit University (Zonguldak, Turkey, 2019). doi:10.13140/RG.2.2.21008.97289 (A000129, A002203)
  114. Yüksel Soykan, Erkan Taşdemir, İnci Okumuş, On Dual Hyperbolic Numbers With Generalized Jacobsthal Numbers Components, Zonguldak Bülent Ecevit University, (Zonguldak, Turkey, 2019). doi:10.13140/RG.2.2.13499.36641 (A001045, A014551)
  115. Yüksel Soykan, Erkan Taşdemir, İnci Okumuş, Melih Göcen, Gaussian Generalized Tribonacci Numbers, Journal of Progressive Research in Mathematics (JPRM, 2018) Vol. 14, Issue 2, 2373-2387. PDF (A000073, A001644)
  116. Yüksel Soykan, İnci Okumuş, On a Generalized Tribonacci Sequence, Journal of Progressive Research in Mathematics (JPRM, 2019) Vol. 14, Issue 3, 2413-2418. Abstract (A000073, A001644)
  117. Yüksel Soykan, İnci Okumuş, Melih Göcen, On Generalized Tetranacci Quaternions, Bülent Ecevit Üniversitesi (Turkey, 2019), Preprints (2019), 2019030129. doi:10.20944/preprints201903.0129.v1
  118. Quico Spaen, Christopher Thraves Caro, Mark Velednitsky, The Dimension of Valid Distance Drawings of Signed Graphs, Discrete & Computational Geometry (2019), 1-11. doi:10.1007/s00454-019-00114-w (A000088)
  119. Amelia Carolina Sparavigna, On Repunits, Politecnico di Torino (2019). doi:10.5281/zenodo.2639620 (A002275)
  120. Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (2019). doi:10.5281/zenodo.2634312 (A000051, A000225, A002064, A003261)
  121. Amelia Carolina Sparavigna, A recursive formula for Thabit numbers, Politecnico di Torino (2019). doi:10.5281/zenodo.2638790 (A007505)
  122. Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92. doi:10.18483/ijSci.2044 (A000051, A000225, A002064, A002275, A003261, A007505)
  123. Amelia Carolina Sparavigna, Groupoids of OEIS A002378 and A016754 Numbers (oblong and odd square numbers), Politecnico di Torino (Italy, 2019). Abstract (A002378, A016754)
  124. Amelia Carolina Sparavigna, Groupoid of OEIS A001844 Numbers (centered square numbers), Politecnico di Torino, Italy. doi:10.5281/zenodo.3252339 (A001844)
  125. Amelia Carolina Sparavigna, Discussion of the groupoid of Proth numbers (OEIS A080075), Politecnico di Torino, Italy. doi:10.5281/zenodo.3339313 (A080075, A116882, A157892, A157893)
  126. Amelia Carolina Sparavigna, Groupoid of OEIS A003154 Numbers (star numbers or centered dodecagonal numbers), Department of Applied Science and Technology, Politecnico di Torino (Italy, 2019). doi:10.5281/zenodo.3387054 (A003154)
  127. Amelia Carolina Sparavigna, Binary Operators of the Groupoids of OEIS A093112 and A093069 Numbers (Carol and Kynea Numbers), Department of Applied Science and Technology, Politecnico di Torino (Italy, 2019). doi:10.5281/zenodo.3240465 (A093069, A093112)
  128. Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT]. doi:10.5281/zenodo.3471358 Abstract (A000051, A000217, A000225, A000384, A001348, A002064, A002275, A002283, A002378, A002943, A003261, A014105, A014635, A022266, A024023, A024049, A024062, A024075, A033585, A034474, A045945, A046092, A050915, A051682, A052539, A060352, A060416, A062725, A062741, A064748, A064756, A081266, A093069, A093112, A139274, A139276, A178572) As we can easily see, other integer sequences can have the same binary operators, and therefore can be used to represent the related groupoids. Using the On-Line Encyclopedia of Integer Sequences (OEIS), we can also identify the properties of these representations of groupoids. At the same time, we can also find integer sequences not given in OEIS and probably not yet studied. Using the On-Line Encyclopedia of Integer Sequences (OEIS), we have seen that quite different sequences can have the same binary operators. We have also found integer sequences not given in OEIS and that need to be studied.
  129. Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019). doi:10.5281/zenodo.3470205 (A000217, A000384, A014105, A014635, A022266, A033585, A062725, A062741, A081266, A139274, A139276, A178572, A331190)
  130. Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10. doi:10.18483/ijSci.2188 (A000051, A000225, A001348, A002064, A002275, A002283, A003261, A024023, A024049, A024062, A034472, A034474, A046092, A050914, A050915, A052539, A060352, A062394, A060416, A064756, A093069, A093112)
  131. S. Spasovski and A. M. Bogdanova, Optimization of the Polynomial Greedy Solution for the Set Covering Problem, 2013, 10th Conference for Informatics and Information Technology (CIIT 2013), PDF
  132. Sam E. Speed, "The Integer Sequence A002620 and Upper Antagonistic Functions", J. Integer Sequences, Volume 6, 2003, Article 03.1.4.
  133. Wolfram Sperber, Mathematical Research Data and Information Services, In: Greuel GM., Koch T., Paule P., Sommese A. (eds) Mathematical Software – ICMS 2016. ICMS 2016. Lecture Notes in Computer Science, vol 9725. Springer; doi:10.1007/978-3-319-42432-3_54
  134. Lukas Spiegelhofer, A lower bound for Cusick's conjecture on the digits of n+t, arXiv:1910.13170 [math.NT], 2019. (A052841)
  135. Lukas Spiegelhofer, Jeffrey Shallit, Continuants, Run Lengths, and Barry's Modified Pascal Triangle, Volume 26(1) 2019, of The Electronic Journal of Combinatorics, #P1.31. See also arXiv:1710.06203 [math.CO], 2017. (A114212, A114213, A114214, A119326)
  136. Lukas Spiegelhofer and Michael Wallner, Divisibility of binomial coefficients by powers of primes, arXiv preprint arXiv:1604.07089, 2016
  137. Lukas Spiegelhofer and Michael Wallner, The Tu--Deng Conjecture holds almost surely, arXiv:1707.07945 [math.CO], July 2017.
  138. Spiegelhofer, Lukas; Wallner, Michael (September 2017). “Divisibility of binomial coefficients by powers of two”. arΧiv:1710.10884. 
  139. Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019). PDF (A001110, A008952, A055254, A064353, A079908, A079909, A079910, A079911, A079912, A079913, A079914, A079915, A079916, A079917, A079918, A079919, A079920, A079921, A079922, A079923, A079924, A079925, A079926, A079927, A079908, A087982, A088672, A089475, A089476, A089480, A109814, A111774, A111775, A111787, A174090)
  140. Sam Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv:1810.00993 [math.CO], 2018. (A000246)
  141. Sam Spiro, Subset Parking Functions, arXiv:1909.10109 [math.CO], 2019.
  142. Michael Z. Spivey, Combinatorial sums and finite differences, Discrete Mathematics, Volume 307, Issue 24, 28 November 2007, Pages 3130-3146.
  143. M. Z. Spivey, A generalized recurrence for Bell Numbers, JIS 11 (2008) 08.2.5
  144. Michael Z. Spivey, Staircase rook polynomials and Cayley's game of Mousetrap, European Journal of Combinatorics, Volume 30, Issue 2, February 2009, Pages 532-539.
  145. Michael Z. Spivey and Laura L. Steil, "The k-Binomial Transforms and the Hankel Transform", J. Integer Sequences, Volume 9, 2006, Article 06.1.1.
  146. Robin James Spivey, Close encounters of the golden and silver ratios, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 3, 170–184. doi:10.7546/nntdm.2019.25.3.170-184 (A000032, A000045, A000129, A002203, A013946)
  147. Jacob Sprittulla, Unordered Factorizations with k Parts, arXiv:1907.07364 [math.CO], 2019.
  148. R. Sprugnoli, Moments of Reciprocals of Binomial Coefficients, Journal of Integer Sequences, 14 (2011), #11.7.8.
  149. R. Sprugnoli, Alternating Weighted Sums of Inverses of Binomial Coefficients, J. Integer Sequences, 15 (2012), #12.6.3.
  150. V. V. Srinivas and B. R. Shankar, Integer Complexity: Breaking the Theta(n^2) barrier, World Academy of Science, Engineering and Technology, Vol. 17, 2008-05-27; http://www.waset.org/Publications/integer-complexity-breaking-the-%C3%8E%C2%B8-n2-barrier/6770
  151. Anitha Srinivasan and John W. Nicholson, An improved upper bound for Ramanujan primes, Integers, 15 (2015), #A52.
  152. Blake C. Stacey, Geometric and Information-Theoretic Properties of the Hoggar Lines, arXiv preprint arXiv:1609.03075, 2016.
  153. Blake C. Stacey, Quantum Theory as Symmetry Broken by Vitality, arXiv:1907.02432 [quant-ph], 2019. (A002853)
  154. P. Christopher Staecker, Strong homotopy of digitally continuous functions, arXiv:1903.00706 [math.GN], 2019. (A248571)
  155. Hermann Stamm-Wilbrandt, The On-Line Encyclopedia of Integer Sequences (OEIS) gets 50, Blog Posting, 2014, https://www.ibm.com/developerworks/community/blogs/HermannSW/entry/the_on_line_encyclopedia_of_integer_sequences_oeis_gets_50?lang=en
  156. Marx Stampfli. Bridged graphs, circuits and Fibonacci numbers. Applied Mathematics and Computation. Volume 302, 1 June 2017, Pages 68-79. doi:10.1016/j.amc.2016.12.030
  157. Pantelimon Stanica, p^q-Catalan Numbers and Squarefree Binomial Coefficients (2000), arXiv:math/0010148.
  158. Pantelimon Stanica, Tsutomu Sasao, Jon T. Butler, Distance Duality on Some Classes of Boolean Functions, Journal of Combinatorial Mathematics and Combinatorial Computing 107 (2018) 181-198.
  159. R. P. Stanley, Hipparchus, Plutarch, Schroeder and Hough, American Mathematical Monthly 104 (1997), 344-350.
  160. Richard P. Stanley, "The Descent Set and Connectivity Set of a Permutation", J. Integer Sequences, Volume 8, 2005, Article 05.3.8.
  161. R. P. Stanley, An Equivalence Relation on the Symmetric Group and Multiplicity-free Flag h-Vectors, PDF
  162. R. P. Stanley, Catalan Numbers, Cambridge, 2015.
  163. Richard P. Stanley, Some Linear Recurrences Motivated by Stern's Diatomic Array, arXiv:1901.04647 [math.CO], 2019. (A052984)
  164. R. P. Stanley and F. Zanello, Unimodality of partitions with distinct parts inside Ferrers shapes, http://www-math.mit.edu/~rstan/papers/distinctparts.pdf, 2013
  165. R. P. Stanley, F. Zanello, The Catalan case of Armstrong's conjecture on core partitions, arXiv preprint arXiv:1312.4352, 2013
  166. R. P. Stanley, F. Zanello, Some asymptotic results on q-binomial coefficients, http://www-math.mit.edu/~rstan/papers/qbc.pdf, 2014.
  167. Richard P. Stanley, Fabrizio Zanello, The Catalan case of Armstrong's conjecture on simultaneous core, SIAM Journal on Discrete Mathematics (2015) 29(1), 658-666. doi:10.1137/130950318 Also arXiv:1312.4352 (A005585, A006419)
  168. David Stanovský, A guide to self-distributive quasigroups, or latin quandles, preprint arXiv:1505.06609, 2015. (A000712, A057771, A181769, some not yet included)
  169. David Stanovský, Petr Vojtechovský, Central and medial quasigroups of small order, arxiv preprint arXiv:1511.03534 [math.GR], 2015.
  170. Daniel W. Stasiuk, An Enumeration Problem for Sequences of n-ary Trees Arising from Algebraic Operads, Master’s Thesis, University of Saskatchewan-Saskatoon (2018). PDF (A002054, A002694, A002696, A003516, A004321, A004334, A013698)
  171. Stees, Ryan, "Sequences of Spiral Knot Determinants" (2016). Senior Honors Projects. Paper 84. James Madison Univ., May 2016; http://commons.lib.jmu.edu/cgi/viewcontent.cgi?article=1043&context=honors201019
  172. Simeon T. Stefanov, Counting fixed points free vector fields on B^2, arXiv:1807.03714 [math.GT], 2018. (A005159, A275607)
  173. P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
  174. W. Stein, Elementary Number Theory: Primes, Congruences and Secrets (2009) doi:10.1007/b13279
  175. P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
  176. Stefan Steinerberger, A hidden signal in the Ulam sequence, Research Report YALEU/DCS/TR-1508, Yale University, 2015. (A002858). Also arXiv preprint arXiv:1507.00267, 2015.
  177. Bertran Steinsky, "A Recursive Formula for the Kolakoski Sequence A000002", J. Integer Sequences, Volume 9, 2006, Article 06.3.7.3
  178. B. von Stengel, New maximal numbers of equilibria in bimatrix games, Discrete and Computational Geometry 21 (1999), 557-568.
  179. Allen Stenger, Experimental Math for Math Monthly Problems, Amer. Math. Monthly, 124 (2017), 116-131. doi:10.4169/amer.math.monthly.124.2.116
  180. Evert Stenlund, On the Vassiliev Invariants, June 2017.
  181. C. Stenson, Weighted voting, threshold functions, and zonotopes, in The Mathematics of Decisions, Elections, and Games, Volume 625 of Contemporary Mathematics Editors Karl-Dieter Crisman, Michael A. Jones, American Mathematical Society, 2014, ISBN 0821898663, 9780821898666
  182. F. Stephan, Degrees of Computing and Learning, Habilitationsschrift an der Universitaet Heidelberg. Ueberarbeitete Version veroeffentlicht als Forschungsberichte Mathematische Logik 46 / 1999, Mathematisches Institut, Universitaet Heidelberg, Heidelberg, 1999.
  183. F. Stephan, On the structures inside truth-table degrees. J. Symbolic Logic 66 (2001), no. 2, 731-770. (Only the printed version mentions the On-Line Encyclopedia of Integer Sequences.)
  184. Holger Stephan, Millions of Perrin pseudoprimes including a few giants, Weierstraß-Institut (Weierstrass Institute, Berlin, Germany, 2019) No. 2657. doi:10.20347/WIAS.PREPRINT.2657 (A002997) A current overview [of numerical results related to Perrin pseudoprimes] can be found in N. J. A. Sloanes (sic) famous OEIS (On-Line Encyclopedia of Integer Sequences) [8].
  185. R. Stephan, Divide-and-conquer generating functions. Part I. Elementary sequences, 2003. arXiv:math.CO/0307027
  186. R. Stephan, arXiv:math.CO/0305348 On a sequence related to the Josephus problem], 2003.
  187. Ralf Stephan, Prove or Disprove. 100 Conjectures from the OEIS (2004), arXiv:math/0409509.
  188. T. Stephen and T. Yusun, Counting inequivalent monotone Boolean functions, arXiv preprint arXiv:1209.4623, 2012
  189. Samuel Stern, The Tree of Trees: on methods for finding all non-isomorphic tree-realizations of degree sequences, Honors Thesis, Wesleyan University, 2017.
  190. Stevanovic, Dragan; de Abreu, Nair M. M.; de Freitas, Maria A. A.; Del-Vecchio, Renata, Walks and regular integral graphs. Linear Algebra Appl. 423 (2007), no. 1, 119-135.
  191. Gary E. Stevens, "A Connell-Like Sequence", J. Integer Sequences, Volume 1, 1998, Article 98.1.4.
  192. David I. Stewart, arXiv:1101.3004 Unbounding Ext [math.RT]
  193. J. F. Stilck and R. M. Brum, Reversible limit of processes of heat transfer, arXiv preprint arXiv:1303.2911, 2013
  194. Manon Stipulanti, Convergence of Pascal-Like Triangles in Parry-Bertrand Numeration Systems, arXiv:1801.03287 [math.CO], 2018. (A007306, A282714, A282715, A282720, A282728, A284441, A284442)
  195. Greg M. Stitt, Kai Yang, Swarup Bhunia, Robert A. Karam, Uniquified FPGA virtualization approach to hardware security, United States Patent Application 20180165478, 2018. HTML (A035512)
  196. Alex Stivala, P Keeler, Another phase transition in the Axelrod model, arXiv:1612.02537, 2016
  197. Florian Stober, Average case considerations for MergeInsertion, Master's Thesis, University of Stuttgart, Institute of Formal Methods in Computer Science, 2018. PDF (A001498)
  198. Florian Stober, Armin Weiß, On the Average Case of MergeInsertion, arXiv:1905.09656 [cs.DS], 2019. (A001498)
  199. Peter Stockman, Upper Bounds on the Time Complexity of Temporal CSPs, Linköping University | Department of Computer science, Master thesis, 30 ECTS | Datateknik 2016 | LIU-IDA/LITH-EX-A--16/022--SE; http://www.diva-portal.org/smash/get/diva2:943554/FULLTEXT01.pdf
  200. Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, preprint arXiv:1504.04404, 2015. (A001045, A055099, A256959, A000302)
  201. Paul K. Stockmeyer, An Exploration of Sequence A000975, Fib. Quart. 55 (5) (2017) 174; also arXiv:1608.08245
  202. D. Stoffer, Delay equations with rapidly oscillating stable periodic solutions, J. Dyn. Diff. Eqs. 20 (1) (2008) 201 doi:10.1007/s10884-006-9068-4
  203. D. Stoffer, Two results on stable rapidly oscillating periodic solutions of delay differential equations, Dyn. Syst. 26 (2) (2011) 169-188 doi:10.1080/14689367.2011.553715
  204. A. Stoimenow, On enumeration of chord diagrams and asymptotics of Vassiliev invariants, FU Berlin Digitale Dissertation (1999).
  205. A. Stoimenow, Wheel graphs, Lucas numbers and the determinant of a knot, Max Planck Institut-Oberseminar, 30/3/2000.
  206. A. Stoimenow, Graphs, determinants of knots and hyperbolic volume, preprint.
  207. Stoimenow, A. On the number of chord diagrams. Discrete Math. 218 (2000), no. 1-3, 209-233.
  208. A. Stoimenow, arXiv:math.GT/0210174 , Generating functions, Fibonacci numbers and rational knots, 2002, J. Algebra 310 (2007), no. 2, 491-525.
  209. A. Stoimenow. On the crossing number of positive knots and braids and braid index criteria of Jones and Morton-Williams-Franks. Trans. Amer. Math. Soc. 354 (2002) 3927-3954.
  210. Stoimenow, A., Square numbers, spanning trees and invariants of achiral knots. Comm. Anal. Geom. 13 (2005), no. 3, 591-631.
  211. A Stoimenow, A theorem on graph embedding with a relation to hyperbolic volume, Combinatorica, October 2016, Volume 36, Issue 5, pp 557–589
  212. T. Stojadinovic, The Catalan numbers, Preprint 2015; https://www.researchgate.net/profile/Tanja_Stojadinovic2/publication/281062823_The_Catalan_numbers/links/55d3022008ae7fb244f56e70.pdf
  213. D. Stolee, Isomorph-free generation of 2-connected graphs with applications, Arxiv preprint arXiv:1104.5261, 2011
  214. M. Stoll, Chabauty without the Mordell-Weil group, arXiv preprint arXiv:1506.04286, 2015
  215. Th. Stoll, "On Families of Nonlinear Recurrences Related to Digits", J. Integer Sequences, Volume 8, 2005, Article 05.3.2.
  216. Stoll, Thomas, On a problem of Erdos and Graham concerning digits. Acta Arith. 125 (2006), no. 1, 89-100.
  217. Th. Stoll, On Hofstadter's married functions, Fib. Q., 46/47 (2008/2009), 62-67.
  218. Thomas Stoll, A fancy way to obtain the binary digits of 759250125 sqrt{2} (2009) arXiv:0902.4168, Amer. Math. Monthly, 117 (2010), 611-617.
  219. Thomas Stoll, On digital blocks of polynomial values and extractions in the Rudin–Shapiro sequence, RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2016, 50, pp. 93-99. <hal-01278708>.
  220. Bruno Stonek, Higher topological Hochschild homology of periodic complex k-theory, arXiv preprint arxiv.org:1801.00156, 2018
  221. D. S. Stones, arXiv:0908.2166 On prime chains [math.NT]
  222. D. S. Stones, The many formulae for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
  223. D. S. Stones, The pariy of the number of quasigroups, Discr. Math., 310 (2010), 3033-3039.
  224. D. S. Stones and I. M. Wanless, Compound orthomorphisms of the cyclic group, Finite Fields Appl. 16 (2010), 277--289.
  225. D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204--215.
  226. D. S. Stones, I. M. Wanless. A congruence connecting Latin rectangles and partial orthomorphisms. Ann. Comb. 16, No. 2, 349-365 (2012). doi:10.1007/s00026-012-0137-6
  227. RJ Stones, S Lin, X Liu, G Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics, Graphs and Combinatorics (2016) 32:1187–1202; doi:10.1007/s00373-015-1643-1
  228. George Story, Counting Maximal Chains in Weighted Voting Posets, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14, No. 1, 2013.
  229. B. D. Stosic, T. Stosic, I. P. Fittipaldi and J. J. P. Veerman, Residual entropy of the square Ising antiferromagnet in the maximum critical field: the Fibonacci matrix, Journal of Physics A: Mathematical and General, Volume 30, Number 10, 1997 , pp. L331-L337.
  230. A. Strangeway, A Reconstruction Theorem for Quantum Cohomology of Fano Bundles on Projective Space, arXiv preprint arXiv:1302.5089, 2013
  231. A. Strangeway, Quantum reconstruction for Fano bundles on projective space, Nagoya Math. J. Volume 218 (2015), 1-28.
  232. Strannegard, C., et al., An anthropomorphic method for number sequence problems. Cognitive Systems Research (2012), doi:10.1016/j.cogsys.2012.05.003
  233. C. Strannegård, A. R. Nizamani, A. Sjöberg, F. Engström, Bounded Kolmogorov Complexity Based on Cognitive Models, 2013; http://engstrom.morot.org/material/bounded_kolmogorov.pdf
  234. Krzysztof Strasburger, The order of three lowest-energy states of the six-electron harmonium at small force constan, The Journal of Chemical Physics 144, 234304 (2016); doi:10.1063/1.4953677
  235. Krzysztof Strasburger, Explicitly correlated wavefunctions of the ground state and the lowest quintuplet state of the carbon atom, arXiv:1903.06051 [physics.chem-ph], 2019. (A000930)
  236. Ross Street, arXiv:math.HO/0303267 Trees, permutations and the tangent function], Reflections 27 (2) (Math. Assoc. of NSW, May 2002), pp. 19-23.
  237. Ross Street, Surprising relationships connecting ploughing a field, mathematical trees, permutations, and trigonometry, Slides from a talk, July 15 2015, Macquarie University. ["There is a Web Page: <https://oeis.org/> by N.J.A. Sloane. It tells, from typing the first few terms of a sequence, whether that sequence has occurred somewhere else in Mathematics. Postgraduate student Daniel Steffen traced this down and found, to our surprise, that the sequence was related to the tangent function tan x. Ryan and Tam searched out what was known about this connection and discovered some apparently new results. We all found this a lot of fun and I hope you will too."]
  238. Volker Strehl, A note on similarity relations, Discrete Mathematics, Volume 19, Issue 1, 1977, Pages 99-101.
  239. Volker Strehl, Alternating permutations and modified Ghandi-polynomials, Discrete Mathematics, Volume 28, Issue 1, 1979, Pages 89-100.
  240. Volker Strehl, Lacunary Laguerre Series from a Combinatorial Perspective, Séminaire Lotharingien de Combinatoire, B76c (2017).
  241. Joshua Stucky, Pell's Equation and Truncated Squares, Number Theory Seminar, Kansas State University, Feb 19 2018. PDF (A023110, A031150)
  242. Kyle Sturgill-Simon, An Interesting Opportunity: The Gilbreath Conjecture, Honors Thesis, Mathematics Dept., Carroll Collge, 2012; http://www.carroll.edu/library/thesisArchive/Sturgill-Simon_2012final.pdf
  243. Bernd Sturmfels, Ngoc Mai Tran, arXiv:1105.5504 COMBINATORIAL TYPES OF TROPICAL EIGENVECTORS], 2011 and Bull. Lond. Math. Soc. 45 (1) (2013) 27-36 doi:10.1112/blms/bds058
  244. J. C. Su, On some properties of two simultaneous polygonal sequences, JIS 10 (2007) 07.10.4.
  245. Po-Chi Su, More Upper Bounds on Taxicab and Cabtaxi Numbers, Journal of Integer Sequences, 19 (2016), #16.4.3.
  246. X.-T. Su, D.-Y. Yang, W.-W. Zhang, A note on the generalized factorial, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
  247. D. Subedi, Complementary Bell Numbers and p-adic Series, Journal of Integer Sequences, 17 (2014), #14.3.1.
  248. R. Suganya, D. Maheswari, On the Negative Pellian Equation y^2 = 110 * x^2 - 29, Journal of Mathematics and Informatics, Vol. 11 (2017), pp. 63-71. doi:10.22457/jmi.v11a9 (A031396, A031398, A130226)
  249. R. A. Sulanke, A recurrence restricted by a diagonal condition: generalized Catalan arrays, Fibonacci Quart. 27 (1989), 33-46.
  250. R. A. Sulanke, "Moments of Generalized Motzkin Paths", J. Integer Sequences, Volume 3, 2000, Article 00.1.1.
  251. R. A. Sulanke, "Objects Counted by the Central Delannoy Numbers", J. Integer Sequences, Volume 6, 2003, Article 03.1.5.
  252. R. A. Sulanke, Generalizing Narayana and Schröder numbers to higher dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp. ]
  253. R. A. Sulanke, Moments, Narayana Numbers and the Cut and Paste for Lattice Paths, Journal of Statistical Planning and Inference, Volume 135, Issue 1, 1 November 2005, Pages 229-244.
  254. R. A. Sulanke, Three dimensional Narayana and Schröder numbers, Theoret. Comput. Sci. 346 (2005), no. 2-3, 455-468.
  255. Blair D. Sullivan, "On a Conjecture of Andrica and Tomescu", Journal of Integer Sequences, Vol. 16 (2013), #13.3.1.
  256. Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771, 2016
  257. Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS 13 (2013) #A65.
  258. H. M. Sultan, Net of Pants Decompositions Containing a non-trivial Separating Curve in the Pants Complex, Arxiv preprint arXiv:1106.1472, 2011
  259. H. Sultan, Separating pants decompositions in the pants complex, PDF.
  260. R. Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Masterarbeit, Univ. Wien, 2013; http://www.mat.univie.ac.at/~kratt/theses/sulzgruber.pdf
  261. Jeremy G. Sumner, Michael D. Woodhams, Lie-Markov models derived from finite semigroups, arXiv:1709.00520 [math.GR], 2017.
  262. Brian Y. Sun, Baoyindureng Wu, Two-log-convexity of the Catalan-Larcombe-French sequence, Journal of Inequalities and Applications, 2015, 2015:404; doi:10.1186/s13660-015-0920-0.
  263. Brian Y. Sun, JX Meng, Proof of a Conjecture of Z.-W. Sun on Trigonometric Series, arXiv preprint arXiv:1606.08153, 2016
  264. Ping Sun, Enumeration of standard Young tableaux of shifted strips with constant width, arXiv preprint arXiv:1506.07256, 2015 Also Electronic Journal of Combinatorics, Volume 24(2), 2017, #P2.41.
  265. Ping Sun, Enumeration formulas for standard Young tableaux of nearly hollow rectangular shapes, Discrete Mathematics, 341 (2018), 1144-1149. doi:10.1016/j.disc.2017.10.005
  266. Qifu Tyler Sun, Hanqi Tang, Zongpeng Li, Xiaolong Yang, Keping Long, Circular-shift Linear Network Codes with Arbitrary Odd Block Lengths, arXiv:1806.04635 [cs.IT], 2018. (A001122)
  267. Xinyu Sun, "New Lower Bound On The Number of Ternary Square-Free Words", J. Integer Sequences, Volume 6, 2003, Article 03.3.2.
  268. Yidong Sun, The Star of David Rule (2008); arXiv:0805.1277; Linear Algebra and its Applications, Volume 429, Issues 8-9, 16 October 2008, Pages 1954-1961.
  269. Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017, 2013
  270. Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv preprint arXiv:1305.2015, 2013
  271. Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
  272. Sun, Yidong; Ma, Luping doi:10.1016/j.ejc.2014.01.004 Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014).
  273. Yidong Sun and Zhiping Wang, Pattern Avoidance in Generalized Non-crossing Trees (2008); arXiv:0805.1280
  274. Yidong Sun and Zhiping Wang, String pattern avoidance in generalized non-crossing trees, Disc. Math. Theor. Comp. Sci. 11 (2009) 79-94.
  275. Sun, Yidong; Wu, Xiaojuan The largest singletons of set partitions. European J. Combin. 32 (2011), no. 3, 369-382.
  276. Sun, Yidong; Xu, Yanjie The largest singletons in weighted set partitions and its applications. Discrete Math. Theor. Comput. Sci. 13 (2011), no. 3, 75-85.
  277. Yidong Sun, Liting Zhai, Some properties of a class of refined Eulerian polynomials, arXiv:1810.07956 [math.CO], 2018. (A000111, A008292)
  278. Zhe Sun, T Suenaga, P Sarkar, S Sato, M Kotani, H Isobe, Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes, Proc. Nath. Acead. Sci. USA, vol. 113 no. 29, pp. 8109–8114, doi:10.1073/pnas.1606530113
  279. Zhi-Hong Sun, "Expansion and identities concerning Lucas Sequences", The Fibonacci Quarterly, Volume 44, May 2006, pages 145-153.
  280. Sun, Zhi-Hong Congruences concerning Lucas sequences. Int. J. Number Theory 10 (2014), no. 3, 793-815.
  281. Zhi-Hong Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integral Transforms & Special Functions, Vol. 26 Issue 8, p642-659, 2015, doi:10.1080/10652469.2015.1034122
  282. Zhi-Hong Sun, Supercongruences involving Euler polynomials, Proc. American Mathematical Society, 144 (2016), 3295-3308.
  283. Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018. (A000172, A002825, A002893, A005258, A005259, A053175, A093388, A125143, A290575, A291898).
  284. Zhi-Wei Sun, doi:10.1016/j.jnt.2011.06.005 On Delannoy numbers and Schroeder numbers, J. Number Theory 131 (2011) 2387-2397; arXiv:1009.2486.
  285. Zhi-Wei Sun, On sums involving products of three binomial coefficients, arXiv:1012.3141 and Acta Arith. 156 (2) (2012) 123-141 doi:10.4064/aa156-2-2
  286. Sun, Zhi-Wei, p-adic valuations of some sums of multinomial coefficients. Acta Arith. 148 (2011), no. 1, 63-76.
  287. Z.-W. Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangrila (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258; PDF.
  288. Zhi-Wei Sun, Conjectures involving combinatorial sequences, Arxiv preprint arXiv:1208.2683, 2012
  289. Zhi-Wei Sun, On sums of Apery polynomials and related congruences. J. Number Theory 132 (2012) 2673-2699 doi:10.1016/j.jnt.2012.05.014
  290. Z.-W. Sun, Conjectures involving primes and quadratic forms, arXiv preprint arXiv:1211.1588, 2012
  291. Zhi-Wei Sun, Products and Sums Divisible by Central Binomial Coefficients, Electronic Journal of Combinatorics, 20(1) (2013), #P9.
  292. Z.-W. Sun, Fibonacci numbers modulo cubes of primes, arXiv:0911.3060; Taiwanese J. Math. 17 (2013). doi:10.11650/tjm.17.2013.2488
  293. Z.-W. Sun, Connections between p = x^2+ 3y^2 and Franel numbers, J. Number Theory 133 (2013), no. 9, 2914-2928.
  294. Z.-W. Sun On some determinants with Legendre symbol entries, 2013; PDF
  295. Z.-W. Sun, Some new problems in additive combinatorics, arXiv preprint arXiv:1309.1679, 2013
  296. Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166, 2013
  297. ZW SUN, A conjecture on unit fractions involving primes, Preprint 2015; http://maths.nju.edu.cn/~zwsun/UnitFraction.pdf
  298. Sun, Zhi-Wei On functions taking only prime values. J. Number Theory 133 (2013), no. 8, 2794-2812.
  299. Sun, Zhi-Wei Congruences for Franel numbers. Adv. in Appl. Math. 51 (2013), no. 4, 524-535.
  300. Z.-W. Sun, Problems on combinatorial properties of primes, arXiv preprint arXiv:1402.6641, 2014
  301. Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290, 2014
  302. Z.-W. Sun, Congruences involving g_n(x) = Sum_{k= 0..n} C(n,k)^2 C(2k,k) x^k, arXiv preprint arXiv:1407.0967, 2014
  303. Sun, Zhi-Wei Congruences involving generalized central trinomial coefficients. Sci. China Math. 57 (2014), no. 7, 1375-1400.
  304. Z.-W. Sun, A result similar to Lagrange's theorem, arXiv preprint arXiv:1503.03743, 2015
  305. Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723, 2016.
  306. Zhi-Wei Sun, Conjectures on representations involving primes, In: M. Nathanson (ed.), Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer Proc. in Math. & Stat., Vol. 220, Springer, New York, 2017, pp. 279-310; http://maths.nju.edu.cn/~zwsun/176r.pdf
  307. Zhi-Wei Sun, New Conjectures of Representations of Integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), No. 2, 97-120. [PDF]. (A260418, A262827, A266152, A266153, A266212, A266215, A266230, A266231, A266277, A266314, A266363, A266364, A266528, A266548, A266985, A267861, A271076, A271099, A271169, A271237, A275150, A280153, A280356, A290491)
  308. Zhi-Wei Sun, Quadratic residues and related permutations and identities, arXiv:1809.07766 [math.NT], 2018. (A319311, A319882, A319894, A319903, A320044)
  309. Zhi-Wei Sun, On permutations of {1, ..., n} and related topics, arXiv:1811.10503 [math.CO], 2018. (A073112, A073364, A126972, A321597, A321610, A321611, A321727, A322069, A322070, A322099, A322363)
  310. Zhi-Wei Sun, On some determinants with Legendre symbol entries, Finite Fields and Their Applications (2019) Vol. 56, 285-307. doi:10.1016/j.ffa.2018.12.004
  311. Zhi-Wei Sun, On some determinants involving the tangent function, arXiv:1901.04837 [math.NT], 2019. (A277445)
  312. Zhi-Wei Sun, Riddles of Representations of Integers, presentation to Nanjing Normal Univ. (China, 2019). PDF (A286944)
  313. Zhi-Wei Sun and Roberto Tauraso, Congruences involving Catalan numbers (2007), arXiv:0709.1665.
  314. Z-W. Sun and R. Tauraso, doi:10.1016/j.aam.2010.01.001 New congruences for central binomial coefficients, Adv. Appl Math 45 (1) (2010) 125-148
  315. Sun, Zhi-Wei; Tauraso, Roberto On some new congruences for binomial coefficients. Int. J. Number Theory 7 (2011), no. 3, 645-662.
  316. Sheila Sundaram, On a positivity conjecture in the character table of S_n, arXiv:1808.01416 [math.CO], 2018. (A046682)
  317. P. Sung and Y. Zhang, Recurring Recurrences in Counting Permutations, 2002-2003.
  318. Zoran Sunik [or Sunic], "Young tableaux and other mutually describing sequences", J. Integer Sequences, Volume 5, 2002, Article 02.1.5.
  319. Z. Sunik [or Sunic], Self-describing sequences and the Catalan family tree (PostScript , Pdf), Electron. J. Combin. 10 (2003), Note 5, 9 pp.
  320. Zoran Sunik [or Sunic], Tree morphisms, transducers and integer sequences (2006), arXiv:math/0612080.
  321. Zoran Sunik [or Sunic], "Rational Tree Morphisms and Transducer Integer Sequences: Definition and Examples", J. Integer Sequences, Volume 10, 2007, Article 07.4.3.
  322. Asep K. Supriatna, Ema Carnia, Meksianis Z. Ndii, Fibonacci numbers: A population dynamics perspective, Heliyon (2019) Vol. 5, Issue 1, e01130. doi:10.1016/j.heliyon.2019.e01130 (A000045)
  323. D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226; doi:10.12988/ams.2014.4140.
  324. D. Suprijanto, I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2211 - 2217; doi:10.12988/ams.2014.4139.
  325. Ken Surendran, Desarazu Krishna Babu, Expressions for rational approximations to square roots of integers using Pell's equation, The Mathematical Gazette (2019) Vol. 103, Issue 556, 101-110. doi:10.1017/mag.2019.12
  326. Ruedi Suter, "Two Analogues of a Classical Sequence", J. Integer Sequences, Volume 3, 2000, Article 00.1.8.
  327. Andrew V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion (2008); arXiv:0811.0296
  328. A. V. Sutherland, Notes on torsion subgroups of elliptic curves over number fields, 2012, http://math.mit.edu/~drew/MazursTheoremSubsequentResults.pdf
  329. A. V. Sutherland, Torsion subgroups of elliptic curves over number fields, 2012, http://www-math.mit.edu/~drew/MazursTheoremSubsequentResults.pdf
  330. K. Sutner, The Ehrenfeucht-Mycielski Staircase, (ps, pdf), Impl. Appl Autom. 2759 (2003) 282-293; doi:10.1007/3-540-45089-0_26. Google Scholar gives a different citation for presumably the same article: Sutner, Klaus, The Ehrenfeucht-Mycielski sequence. In International Conference on Implementation and Application of Automata, 2003, Jul 16 (pp. 282-293). Springer, Berlin, Heidelberg. See A007061 for a cached copy.
  331. Klaus Sutner and Sam Tetruashvili, Inferring Automatic Sequences, http://www.cs.cmu.edu/~sutner/papers/auto-seq.pdf
  332. A. Sutyak, Pierce-Engel Hybrid Expansions, Dissertation, West Virginia Univ., 2008.
  333. I. D. Svalbe and A. Z. Tirkel, Extended families of 2D arrays with near optimal auto and low cross-correlation, EURASIP Journal on Advances in Signal Processing, 2017:18. doi:10.1186/s13634-017-0455-2
  334. Karl Svozil, Faithful orthogonal representations of graphs from partition logics, arXiv:1810.10423 [quant-ph], 2018. (A000110)
  335. Jerry Swan, Harmonic analysis and resynthesis of Sliding-Tile Puzzle heuristics, 2017 IEEE Congress on Evolutionary Computation (CEC). doi: 10.1109/CEC.2017.7969355
  336. J. W. H. Swanepoel, On a generalization of a theorem by Euler, Journal of Number Theory 149 (2015) 46-56.
  337. Christine Swart and Andrew Hone, Integrality and the Laurent phenomenon for Somos 4 sequences (2005), arXiv:math/0508094.
  338. Theo G. Swart, JH Weber, KAS Immink, Prefixless q-ary Balanced Codes with Fast Syndrome-based Error Correction, IEEE Transactions on Information Theory, October 2017 doi:10.1109/TIT.2017.2767034
  339. Eric Swartz, Nicholas J. Werner, Zero pattern matrix rings, reachable pairs in digraphs, and Sharp's topological invariant tau, arXiv:1709.05390 [math.CO], 2017.
  340. J. F. Sweeney, Clifford Clock and the Moolakaprithi Cube, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.5350&rep=rep1&type=pdf, 2014.
  341. John Frederick Sweeney, "Shakti Peetha 52, 42 Nomes, the F4 Exceptional Lie Algebra and the Sedenions of Ancient India and Egypt", http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.697.9942&rep=rep1&type=pdf (Mentions A121738).
  342. S. Sykora, Blazys Expansions and Continued Fractions, Stan's Library, Volume IV, Mathematics, 2013; PDF
  343. Stanislav Sykora, Fixed points of the mappings exp(z) and –exp (z) in C, http://www.ebyte.it/library/docs/math16/2016_MATH_Sykora_FixedPointsExp.pdf; doi:10.3247/SL6Math16.002, 2016.
  344. Stanislav Sykora, Sequences related to the differential equation f ' ' = af ' f, Stan's Library, Vol.VI, June 2017. doi:10.3247/SL6Math17.001
  345. Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019. HTML (A001707, A003676, A005563, A051288, A105636, A108958, A195696, A212697, A212698, A212699, A212700, A212701, A212702, A212703, A212704, A213343, A213344, A213345, A213346, A213347, A213348, A213349, A213350, A213351, A213352, A231303, A231304, A231305, A231306, A231307, A231308, A231309)
  346. Stanislav Sýkora, Ad Astra Ltd and Early History of Gravity Engineering, Stan's Library, Education, Vol. 1 (2006, 2012). doi:10.3247/SL1Math06.005 (A208745)
  347. Szabados, Michal Distances of group tables and Latin squares via equilateral triangle dissections. J. Combin. Theory Ser. A 123 (2014), 1-7.
  348. P. J. Szablowski, On moments of Cantor and related distributions, arXiv preprint arXiv:1403.0386, 2014
  349. Tamás Szakács. Convolution of second order linear recursive sequences I. Annales Mathematicae et Informaticae 46 (2016) pp. 205–216.
  350. Székely, L. A.; Wang, Hua, On subtrees of trees. Adv. in Appl. Math. 34 (2005), no. 1, 138-155.
  351. Székely, L. A.; Wang, Hua, doi:10.1016/j.dam.2006.05.008 Binary trees with the largest number of subtrees, Discrete Appl. Math. 155 (2007), no. 3, 374-385.
  352. Szilárd Szalay, The classification of multipartite quantum correlation, arXiv:1806.04392 [quant-ph], 2018. (A000110, A000112)
  353. Szilard Szalay, G Barcza, T Szilvási, L Veis, Ö Legeza, The correlation theory of the chemical bond, arXiv preprint arXiv:1605.06919, 2016
  354. Szilard Szalay and Zoltan Kokenyesi, Partial separability revisited, Arxiv preprint arXiv:1206.6253, 2012
  355. Igor Szczyrba, On the existence of ratio limits of weighted n-generalized Fibonacci sequences with arbitrary initial conditions, arXiv preprint arXiv:1604.02361, 2016
  356. I. Szczyrba, R. Szczyrba, M. Burtscher, Analytic and Geometric Representations of the Generalized n-anacci Constants, arXiv preprint arXiv:1409.0577, 2014
  357. Igor Szczyrba, R Szczyrba, M Burtscher, Geometric Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, 19, 2016, #16.3.8.
  358. Szilárd Szalay, k-stretchability of entanglement, and the duality of k-separability and k-producibility, arXiv:1906.10798 [quant-ph], 2019. (A000041, A000110)
  359. Szynal-Liana, Anetta; Włoch, Andrzej; Włoch, Iwona On generalized Pell numbers generated by Fibonacci and Lucas numbers. Ars Combin. 115 (2014), 411-423.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.