This site is supported by donations to The OEIS Foundation.

CiteF

From OeisWiki
Jump to: navigation, search


"We thank Daniele Dorigoni for identifying this function using The On-Line Encyclopedia of Integer Sequences." [Joseph A. Farrow and Arthur E. Lipstein, 2017]

"We would like to acknowledge the mathematical software Sage [44] and the Online Encyclopedia of Integer Sequences [33] which were both essential for our investigations." [Laura Florescu et al., 2015]

"Sloane's influential On-Line Encyclopedia of Integer Sequences is an indispensable research tool in the service of the mathematical community..." [A. S. Fraenkel, 2010]

"The connection between tensor products of A_oo-maps and hypercubes (Remark 4.2) was discovered by consulting the OEIS." [Matthias Franz, 2015]


About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with F.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. V. Fack, S. Fanscali, L. Szabolcs, L. Storme, G. van de Voorde, J. Winne, Small weight codewords in the codes arising from Desarguesian projective planes, Des. Codes Crypt. 46 (1) (2007) 25-43 doi:10.1007/s10623-007-9126-x
  2. V. Fack, S. Lievens and J. Van der Jeugt, On rotation distance between binary coupling trees and applications for 3nj-coefficients, Comput. Phys. Commun., 119 (1999) 99-114.
  3. V. Fack, S. Lievens and J. Van der Jeugt, On the diameter of the rotation graph of binary coupling trees, Discrete Mathematics 245 (2002) 1-18, doi:10.1016/S0012-365X(01)00418-6
  4. Vinicius Facó, D Marques, Tribonacci Numbers and the Brocard-Ramanujan Equation, - Journal of Integer Sequences, Vol. 19, 2016, #16.4.4.
  5. Barry Fagin, Idempotent Factorizations of Square-free Integers, Preprints (2019), also in Information (2019) Vol. 10, No. 7, 232. doi:10.3390/info10070232 (A306360, A306508, A306812, A318555)
  6. P. Fahr, Infinite Gabriel-Roiter measures for the 3-Kronecker quiver, PhD. U. Bielfeld (2008)
  7. P. Fahr, C. M. Ringel, A partition number for Fibonacci Numbers, JIS 11 (2008) 08.1.4.
  8. Philipp Fahr and Claus Michael Ringel, Categorification of the Fibonacci Numbers Using Representations of Quivers, JIS 15 (2012) 12.2.1.
  9. Uli Fahrenberg, Christian Johansen, Georg Struth, Ratan Bahadur Thapa, Generating Posets Beyond N, arXiv:1910.06162 [cs.FL], 2019. (A000112, A003430, A079566)
  10. N.-E. Fahssi, The polynomial triangles revisited, Arxiv preprint arXiv:1202.0228, 2012
  11. N.-E. Fahssi, A Systematic Study of Polynomial Triangles, Electronic Journal of Combinatorics, 2012.
  12. N.-E. Fahssi, The many aspects of polynomial triangles, Conference on Discrete Mathematics and Computer Science, Algeria, Sidi Bel Abbès, Nov 15-19, 2015; Recits Laboratory, Faculty of Mathematics, USTHB; http://www.lrecits.usthb.dz/activites.htm; pages 147-150.
  13. Nour-Eddine Fahssi, On the combinatorics of exclusion in Haldane fractional statistics, arXiv:1808.00045 [cond-mat.stat-mech], 2018. (A078812)
  14. G. Failla, C. Peterson, R. Utano, Algorithms and basic asymptotics for generalized numerical semigroups in N^d, Semigroup Forum, Jan 31 2015, doi:10.1007/s00233-015-9690-8
  15. Sergio Falcon, On the k-Lucas numbers, Int. J. Cont. Math. Sci. 6 (2011) 1039-1050
  16. S. Falcon, On the Lucas triangle and its relationship with the k-Lucas numbers, Journal of Mathematical and Computational Science, 2 (2012), No. 3, 425-434. Available online at http://scik.org.
  17. S. Falcon, Generalized Fibonacci Sequences Generated from a $ k $--Fibonacci Sequence, Journal of Mathematics Research Vol. 4, No. 2; April 2012; http://journal.ccsenet.org/index.php/jmr/article/viewFile/14516/10822.
  18. Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832; doi:10.4134/CKMS.2013.28.4.827.
  19. S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234; doi:10.4236/am.2014.515216
  20. S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675; http://saspublisher.com/wp-content/uploads/2014/06/SJET24C669-675.pdf
  21. S. Falcon, On the k-Jacobsthal Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 67-77, ISSN 2374-2348 (Print) 2374-2356 (Online); http://aripd.org/journals/arms/Vol_2_No_1_March_2014/8.pdf
  22. S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
  23. S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
  24. S. Falcon, Generalized (k, r)–Fibonacci Numbers, Gen. Math. Notes, Vol. 25, No. 2, December 2014, pp.148-158; http://www.geman.in
  25. Sergio Falcon, The k–Fibonacci difference sequences, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153–157.
  26. Sergio Falcon, On the complex k-Fibonacci numbers, Cogent Mathematics, (2016), 3: 1201944; doi:10.1080/23311835.2016.1201944
  27. Sergio Falcon, <a href="http://ijism.org/administrator/components/com_jresearch/files/publications/IJISM_816_FINAL.pdf">Generating Function of Some k-Fibonacci and k-Lucas Sequences</a>, International Journal of Innovation in Science and Mathematics (2019) Vol. 7, Issue 2, 2347–9051.
  28. Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643–651. doi:10.26713/cma.v10i3.1221 (A000045, A000129, A000931, A002605, A015518, A052921, A114199, A114203, A312448)
  29. Sergio Falcon, Angel Plaza, On k-Fibonacci numbers of arithmetic indexes, Applied Mathematics and Computation, Volume 208, Issue 1, 1 February 2009, Pages 180-185.
  30. Sergio Falcon, Angel Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Solitons & Fractals, Volume 39, Issue 3, 15 February 2009, Pages 1005-1019.
  31. Sergio Falcon, Angel Plaza, The metallic ratios as limits of complex valued transformations, Chaos, Solitons & Fractals, Volume 41, Issue 1, 15 July 2009, Pages 1-13.
  32. Sergio Falcon, Angel Plaza, k-Fibonacci sequences modulo m, Chaos, Solitons & Fractals, Volume 41, Issue 1, 15 July 2009, Pages 497-504.
  33. Victor Falgas-Ravry and Emil R. Vaughan, On applications of Razborov's flag algebra calculus to extremal 3-graph theory, Arxiv preprint arXiv:1110.1623, 2011
  34. Joshua Fallon, Kirsten Hogenson, Lauren Keough, Mario Lomelí, Marcus Schaefer, Pablo Soberón, A Note on the Maximum Rectilinear Crossing Number of Spiders, arXiv:1808.00385 [math.CO], 2018. (A248380)
  35. Falgas-Ravry, Victor; Vaughan, Emil R. Applications of the semi-definite method to the Turán density problem for 3-graphs. Combin. Probab. Comput. 22 (2013), no. 1, 21-54. doi:10.1017/S0963548312000508
  36. Wenjie Fang, A partial order on Motzkin paths, Discrete Math., 343 (2020), #111802.
  37. Xin Fang and Ghislain Fourier, Torus fixed points in Schubert varieties and Genocchi numbers, arXiv:1504.03980.
  38. Reza Farhadian, A New Conjecture On the primes, Preprint, 2016; http://www.primepuzzles.net/conjectures/Reza%20Faradian%20Conjecture.pdf
  39. Bakir Farhi, A Study of a Curious Arithmetic Function Journal of Integer Sequences, Vol. 15 (2012), #12.3.1.
  40. Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6. HTML (A000032, A000045, A000051, A000129, A000225, A002203)
  41. Michael Farina and Armando Grez, New Upper Bounds on the Distance Domination Numbers of Grids, Rose-Hulman Undergraduate Mathematics Journal, Volume 17, No. 2, Article 7, Fall 2016.
  42. G. Farkas, G. Kallos and G. Kiss, Large primes in generalized Pascal triangles Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 158-171; http://www.acta.sapientia.ro/acta-info/C3-2/info32-2.pdf.
  43. Elin Farnell, Puzzle Pedagogy: A Use of Riddles in Mathematics Education, PRIMUS, July 2016, pp. 202-211; doi:10.1080/10511970.2016.1195465
  44. M. Farrokhi D. G., "Some Remarks On the Equation Fn = kFm In Fibonacci Numbers", J. Integer Sequences, Volume 10, 2007, Article 07.5.7.
  45. Joseph A. Farrow, A Monte Carlo Approach to the 4D Scattering Equations, arXiv:1806.02732 [hep-th], 2018. (A008292)
  46. Joseph A. Farrow and Arthur E. Lipstein, From 4d Ambitwistor Strings to On Shell Diagrams and Back, arXiv:1705.07087v1 [hep-th], 2017. (OEIS only cited in version 1) ["We thank Daniele Dorigoni for identifying this function using The On-Line Encyclopedia of Integer Sequences"]
  47. James A. Farrugia, Brun's 1920 Theorem on Goldbach's Conjecture, Masters Thesis, Utah State University, All Graduate Theses and Dissertations (2018). 7153 HTML (A002375)
  48. Massimiliano Fasi, Gian Maria Negri Porzio, Determinants of Normalized Bohemian Upper Hessemberg Matrices, University of Manchester (England, 2019). Abstract (A000045, A000051, A001588, A001611, A003433, A052542)
  49. Nazim Fatès, Remarks on the Cellular Automaton Global Synchronisation Problem, in Cellular Automata and Discrete Complex Systems, Lecture Notes in Computer Science Volume 9099, 2015, pp 113-126.
  50. Nazim Fatès, Remarks on the cellular automaton global synchronisation problem–deterministic vs. stochastic models, Preprint 2017; https://hal.inria.fr/hal-01653631/document
  51. Nazim Fatès, Biswanath Sethi, Sukanta Das, On the reversibility of ECAs with fully asynchronous updating: the recurrence point of view, Preprint, 2017, also doi:10.1007/978-3-319-73216-9_15 (A001612, A005251, A259967)
  52. F. Fauvet, L. Foissy, D. Manchon, The Hopf algebra of finite topologies and mould composition, arXiv preprint arXiv:1503.03820, 2015
  53. Frederic Fauvet, L Foissy, D Manchon, Operads of finite posets, arXiv preprint arXiv:1604.08149, 2016
  54. Bernadette Faye, Florian Luca, Pieter Moree, On the discriminator of Lucas sequences, arXiv:1708.03563 [math.NT], 2017.
  55. YN Fedorov, ANW Hone, Sigma-function solution to the general Somos-6 recurrence via hyperelliptic Prym varieties, arXiv preprint arXiv:1512.00056, 2015
  56. J. M. Fedou, Enumeration of skew Ferrers diagrams and basic Bessel functions, Journal of Statistical Planning and Inference, Volume 34, Issue 1, January 1993, Pages 107-123.
  57. J.-M. Fedou, G. Fici, Some remarks on differentiable sequences and recursivity, JIS 13 (2010) #10.3.2
  58. Greg Fee, Simon Plouffe, An efficient algorithm for the computation of Bernoulli numbers (2007), arXiv:math/0702300
  59. Ad Feelders, Linda C. van der Gaag, Learning Bayesian network parameters under order constraints, International Journal of Approximate Reasoning, Volume 42, Issues 1-2, May 2006, Pages 37-53.
  60. Uriel Feige, Tighter bounds for online bipartite matching, 2018. PDF (A000166, A000255, A180191)
  61. J. Feigenbaum, A. D. Jaggard, M. Schapira, Approximate Privacy: Foundations and Quantification, ACM Transactions on Algorithms (TALG), Volume 10 Issue 3, June 2014. Article No. 11
  62. Feigin, Evgeny, Degenerate flag varieties and the median Genocchi numbers. Math. Res. Lett. 18 (2011), no. 6, 1163-1178.
  63. E. Feigin, The median Genocchi numbers, Q-analogues and continued fractions, Arxiv preprint arXiv:1111.0740, 2011 and doi:10.1016/j.ejc.2012.06.004 Eur. J. Combinat. 33 (8) (2012) 1913-1918
  64. Pedro Feijao, Reconstruction of ancestral gene orders using intermediate genomes, BMC Bioinformatics 2015, 16 (Suppl 14):S3; doi:10.1186/1471-2105-16-S14-S3; Proceedings of the 13th Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Comparative Genomics: Bioinformatics
  65. P. Feijao, F. V. Martinez, A Thevenin, On the Multichromosomal Hultman Number, Advances in Bioinformatics and Computational Biology, Lecture Notes in Computer Science Volume 8826, 2014, pp 9-16; Brazilian Symposium on Bioinformatics, BSB 2014, Belo Horizonte, Brazil, October 28-30, 2014, Proceedings; doi:10.1007/978-3-319-12418-6_2
  66. P Feijão, FV Martinez, A Thévenin, On the distribution of cycles and paths in multichromosomal breakpoint graphs and the expected value of rearrangement distance, BMC Bioinformatics, 2015, 16(Suppl. 19): S1; doi:10.1186/1471-2105-16-S19-S1
  67. T. Feil, K. Hutson, R. M. Kretchmar, Tree Traversals and permutations, Congr. Numer. 172 (2005) 201-221
  68. G. Feinberg, K.-H. Lee, Homogeneous representations of KLR-algebras and fully commutative elements, arXiv preprint arXiv:1401.0845, 2014
  69. Philip Feinsilver and John McSorley, Zeons, Permanents, the Johnson Scheme, and Generalized Derangements, International Journal of Combinatorics, Volume 2011, Article ID 539030, 29 pages; doi:10.1155/2011/539030.
  70. Andrew Feist, Fun with the (n) function.
  71. Leonid G. Fel, On Summatory Totient Functions (2008); arXiv:0802.0619
  72. D. P. Feldman and J. P. Crutchfield, Synchronizing to Periodicity: The Transient Information and Synchronization Time of Periodic Sequences, Santa Fe Institute Working Paper 02-08-043. arXiv:nlin/0208040. 2002.
  73. Stefan Felsner, Éric Fusy, Marc Noy et al., Bijections for Baxter Families and Related Objects (2008); arXiv:0803.1546, J. Comb. Theory A 118 (3) (2011) 993-1020 doi:10.1016/j.jcta.2010.03.017
  74. Felsner, Stefan; Trotter, William T., Posets and planar graphs. J. Graph Theory 49 (2005), no. 4, 273-284.
  75. S. Felsner, F. Zickfeld, On the number of planar orientations with prescribed degrees, Electr. J. Comb. 15 (1) (2008) R77, HTML
  76. Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. arXiv:1701.06145 [math.CA], 2017.
  77. D.-J. Feng, P. Liardet and A. Thomas, Partition functions in numeration systems with bounded multiplicity, Uniform Distribution Theory, submitted 2013, http://www.math.cuhk.edu.hk/~djfeng/fengpapers/Feng-Liardet-Thomsa/FengLiardetThomasPartition3R.pdf
  78. Jishe Feng, The Hessenberg matrices and Catalan and its generalized numbers, arXiv preprint arXiv:1810.09170, 2018
  79. Jo Fenstad, Deciphering the hidden Pascal code of Guggenheim's quasichemical model. Overcoming computational limitations by use of Pascal's triangle, Journal of Mathematical Chemistry, Volume 42, Number 4 / November, 2007.
  80. V. Féray, Cyclic inclusion-exclusion, arXiv preprint arXiv:1410.1772, 2014.
  81. Svjetlan Feretić, The perimeter generating function for nondirected diagonally convex polyominoes, arXiv:1907.09409 [math.CO], 2019. (A269228)
  82. R. Feria-Puron, H. Perez-Roses, J. Ryan, Searching for Large Circulant Graphs, arXiv preprint arXiv:1503.07357, 2015
  83. R. Feria-Purón, J. Ryan, H. Pérez-Rosés, Searching for Large Multi-Loop Networks, Electronic Notes in Discrete Mathematics, Volume 46, September 2014, Pages 233-240.
  84. Mauricio Fernández, On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials, Journal of Elasticity (2019). doi:10.1007/s10659-019-09754-8 (A005043)
  85. Tim Fernando, Carl Vogel, Prior Probabilities of Allen Interval Relations over Finite Orders, 11th International Conference on Agents and Artificial Intelligence (NLPinAI 2019) Prague. PDF (A055203)
  86. Emmanuel Ferrand, "Deformations of the Taylor Formula", J. Integer Sequences, Volume 10, 2007, Article 07.1.7.
  87. Luca Ferrari, Some combinatorics related to central binomial coefficients: Grand-Dyck paths, coloured noncrossing partitions and signed pattern avoiding permutations (2008); arXiv:0806.0973 and Graphs. Comb. 26 (1) (2010) 51-70 doi:10.1007/s00373-010-0895-z
  88. Luca Ferrari, Schroder partitions, Schroder tableaux and weak poset patterns, arXiv preprint arXiv:1606.06624, 2016.
  89. Luca Ferrari, Enhancing the connections between patterns in permutations and forbidden configurations in restricted elections, arXiv:1906.10553 [math.CO], 2019. (A006012)
  90. Ferrari, L.; Grazzini, E.; Pergola, E.; Rinaldi, S. Some bijective results about the area of Schroeder paths. Random generation of combinatorial objects and bijective combinatorics. Theoret. Comput. Sci. 307 (2003), no. 2, 327-335.
  91. Luca Ferrari and Emanuele Munarini, Enumeration of saturated chains in Dyck lattices, Arxiv preprint arXiv:1203.6807, 2012
  92. Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, Arxiv preprint arXiv:1203.6792, 2012 and J. Int. Seq. 17 (2014) #14.1.5
  93. L. Ferrari, E. Pergola, R. Pinzani and S. Rinaldi, Jumping succession rules and their generating functions, Discrete Math., 271 (2003), 29-50.
  94. Ferrari, Luca; Pergola, Elisa; Pinzani, Renzo; Rinaldi, Simone Some applications arising from the interactions between the theory of Catalan-like numbers and the ECO method. Ars Combin. 99 (2011), 109-128.
  95. L. Ferrari, E. Pergola, R. Pinzani, S. Rinaldi et al. An algebraic characterization of the set of succession rules, Selected papers in honour of Maurice Nivat. Theoret. Comput. Sci. 281 (2002), no. 1-2, 351-367.
  96. Margherita Maria Ferrari, Emanuele Munarini, Decomposition of some Hankel matrices generated by the generalized rencontres polynomials, Linear Algebra and its Applications (2019), Vol. 567, 180-201. doi:10.1016/j.laa.2018.12.029.
  97. Margherita Maria Ferrari, Norma Zagaglia Salvi, Aperiodic Compositions and Classical Integer Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.8. PDF
  98. José William Porras Ferreira, An Approach to Solve Erdös-Straus Conjecture, ResearchGate, 2017.
  99. Luan Alberto Ferreira and Hugo Luiz Mariano, Some Consequences of the Firoozbakht's Conjecture, arXiv:1604.03496v2, 2017.
  100. Luan Alberto Ferreira, Hugo Luiz Mariano, Prime gaps and the Firoozbakht Conjecture, São Paulo Journal of Mathematical Sciences (2018), 1-11. doi:10.1007/s40863-018-0113-0 (A182514)
  101. R. Ferrer-i-Cancho, Non-crossing dependencies: least effort, not grammar, arXiv preprint arXiv:1411.2645, 2014
  102. L. Ferretti, F. Disanto and T. Wiehe, The Effect of Single Recombination Events on Coalescent Tree Height and Shape, PLoS ONE 8(4): e60123. doi:10.1371/journal.pone.0060123.
  103. J. Ferte, V. Pilaud and M. Pocchiola, On the number of simple arrangements of five double pseudolines. Discrete Comput. Geom. 45 (2011), 279-302.
  104. Guillaume Fertin, Samuele Giraudo, Sylvie Hamel, Stéphane Vialette, Unshuffling Permutations: Trivial Bijections and Compositions, International Conference on Theory and Applications of Models of Computation: Theory and Applications of Models of Computation (TAMC 2019). Springer, Cham. 242-261. doi:10.1007/978-3-030-14812-6_15
  105. Laurent Feuilloley, Brief Announcement: Average Complexity for the LOCAL Model, preprint arXiv:1505.05072 [cs.DC], 2017. (A000788)
  106. Laurent Feuilloley, How Long It Takes for an Ordinary Node with an Ordinary ID to Output?, arXiv:1704.05739 [cs.DC], 2017.
  107. C. J. Fewster, D. Siemssen, Enumerating Permutations by their Run Structure, arXiv preprint arXiv:1403.1723, 2014
  108. Maximilian Fichtner, K Voigt, S Schuster, The tip and hidden part of the iceberg: Proteinogenic and non-proteinogenic aliphatic amino acids, Biochimica et Biophysica Acta (BBA)-General, 2016, Volume 1861, Issue 1, Part A, January 2017, Pages 3258-3269; doi:10.1016/j.bbagen.2016.08.008
  109. Gabriele Fici, Open and Closed Words, in Giovanni Pighizzini, ed., The Formal Language Theory Column, Bulletin of EATCS, 2017, http://bulletin.eatcs.org/index.php/beatcs/article/viewFile/508/497
  110. G. Fici and Zs. Liptak, doi:10.1007/978-3-642-22321-1_20 On Prefix Normal Words, Lecture Notes in Computer Science 6795 (2011) 228-238; also http://www.i3s.unice.fr/~mh/RR/2011/RR-11-03-G.FICI.pdf
  111. Gabriele Fici, Filippo Mignosi, Jeffrey Shallit, Abelian-square-rich words, Theoretical Computer Science, Volume 684, 2017, pp. 29-42. arXiv preprint arXiv:1701.00948
  112. Dan Fielder, Some thoughts on rook polynomials on square chessboards, in: Applications of Fibonacci Numbers, vol 9 (2004), Kluwer, p. 101-108
  113. Benjamin Fifield, Kosuke Imai, Jun Kawahara, Christopher T. Kenny, The Essential Role of Empirical Validation in Legislative Redistricting Simulation, Tech. rep., Department of Government and Department of Statistics, Harvard University (2019). PDF (A068416)
  114. Sérgio Martins Filho, Discrete Calculus of Finite Sequences, arXiv:1606.02182 [cs.DM], 2016, also PDF
  115. James Allen Fill, Svante Janson and Mark Daniel Ward, Partitions with Distinct Multiplicities of Parts: On An "Unsolved Problem" Posed By Herbert Wilf, Arxiv preprint arXiv:1203.2670, 2012
  116. Peter E. Finch, From spin to anyon notation: The XXZ Heisenberg model as a D_3 (or su(2)_4) anyon chain, Arxiv preprint arXiv:1201.4470, 2012
  117. S. R. Finch, Mathematical Constants, Cambridge University Press (to appear), 2003. (Sample Essays and Supplementary Materials)
  118. Steven Finch, Pattern-Avoiding Permutations [There is a cached copy attached to A005802]
  119. S. R. Finch, Idempotents and Nilpotents Modulo n, arXiv:math.NT/0605019
  120. Steven Finch, Powers of Euler's q-Series, arXiv:math.NT/0701251.
  121. Steven Finch, Cilleruelo's LCM Constants, http://www.people.fas.harvard.edu/~sfinch/csolve/ci.pdf, 2013.
  122. S. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/csolve/tp.pdf">Toothpicks and live cells</a>
  123. S. Finch, Average least nonresidues
  124. Steven R. Finch, How Far Might We Walk at Random?, arXiv:1802.04615 [math.HO], 2018. (A132890, A282869, A283595)
  125. Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018. doi:10.1017/9781316997741 (A000084, A000088, A000122, A000231, A000311, A000616, A000669, A000944, A001187, A001349, A002171, A002218, A003094, A003180, A006290, A006351, A006571, A020649, A021103, A025591, A029769, A030184, A030187, A030205, A030206, A039826, A047653, A053760, A054891, A058379, A058380, A058381, A058385, A058386, A058387, A058964, A058965, A069918, A086376, A086394, A092419, A095983, A122777, A128263, A133871, A140686, A144294, A156082, A156181, A159584, A159630, A159631, A159632, A159633, A159634, A159635, A159636, A159813, A159814, A187096, A187846, A232927, A232928, A232929, A232930, A232931, A232932, A247198, A251913)
  126. Steven Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math.NT/0604465.
  127. S. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle arXiv:0802.2654
  128. Alex Fink, Aviezri S. Fraenkel and Carlos Santos, LIM is not slim, International Journal of Game Theory, May 2013
  129. A. Fink, R. Guy, M. Krusemeyer, Partitions with parts occuring at most thrice, Contrib. Discrete Math. 3 (2) (2008) 76-115 zbMath
  130. Thomas Fink, Recursively divisible numbers, arXiv:1912.07979 [math.NT], 2019. (A000629, A166735, A166981)
  131. Thomas M. A. Fink, Emmanuel Barillot, and Sebastian E. Ahnert, Dynamics of network motifs, PDF, 2006.
  132. Conor Finn, Joseph T. Lizier, Generalised Measures of Multivariate Information Content, arXiv:1909.12166 [cs.IT], 2019. (A000372)
  133. Thomas Finn Lidbetter, Counting, Adding, and Regular Languages, Masters Thesis, University of Waterloo, Ontario, Canada, 2018. PDF (A014486, A031443, A044951, A061854, A072600, A072601, A072602)
  134. H. Finner and K. Strassburger, (2001). Increasing sample sizes do not always increase the power of UMPU-tests for 2x2-tables. Metrika, 54, 77-91.
  135. Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001.
  136. H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  137. Bartomeu Fiol, Jairo Martínez-Montoya, Alan Rios Fukelman, The planar limit of N=2 superconformal field theories, arXiv:2003.02879 [hep-th], 2020. (A000055, A000081)
  138. M. C. Firengiz, A. Dil, Generalized Euler–Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21–32; PDF
  139. F. Firoozbakht, M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
  140. Moritz Firsching, The complete enumeration of 4-polytopes and 3-spheres with nine vertices, arXiv:1803.05205 [math.MG], 2018. (A005841, A133338, A222318)
  141. Eldar Fischer, Tomer Kotek, and Johann A. Makowsky, Application of Logic to Combinatorial Sequences and Their Recurrence Relations, http://www.cs.technion.ac.il/~tkotek/pubfiles/12-FKM-final.pdf
  142. Georg Fischer, Richard J. Mathar, p-finite recurrences from sqrt generating functions, (2020). PDF (A026375, A078634, A122877, A242586)
  143. Johannes Fischer and Florian Kurpicz, Fast and Simple Parallel Wavelet Tree and Matrix Construction, arXiv:1702.07578 [cs.DS], 2017.
  144. Mareike Fischer, Extremal values of the Sackin balance index for rooted binary trees, arXiv:1801.10418 [q-bio.PE], 2018. (A000096, A003314, A299037)
  145. Mareike Fischer, Michelle Galla, Lina Herbst, Yangjing Long, Kristina Wicke, Non-binary treebased unrooted phylogenetic networks and their relations to binary and rooted ones, arXiv:1810.06853 [q-bio.PE], 2018. (A000088)
  146. Mareike Fischer, Lina Herbst, Kristina Wicke, Extremal properties of the Colless balance index for rooted binary trees, arXiv:1904.09771 [math.CO], 2019. (A307689)
  147. Mareike Fischer, V Liebscher, On the Balance of Unrooted Trees, arXiv preprint arXiv:1510.07882, 2015.
  148. Nick Fischer, Christian Ikenmeyer, The Computational Complexity of Plethysm Coefficients, arXiv:2002.00788 [cs.CC], 2020. (A001399, A069905)
  149. Matteo Fischetti, Domenico Salvagnin, Chasing First Queens by Integer Programming, 2018. PDF (A000170, A065188, A141843)
  150. Matteo Fischetti, Domenico Salvagnin, Finding First and Most-Beautiful Queens by Integer Programming, arXiv:1907.08246 [cs.DS], 2019. (A000170, A065188, A141843)
  151. P. M. Fishbane and P. Kaus, Neutrino Oscillations in Matter of Varying Density, J. Phys. G: Nucl. Part. Phys., 2001, v.27, N.12, p. 2405-14. arXiv:hep-ph/0101013
  152. Fishburn, Peter C.; Reeds, James A. Counting split semiorders. Order 18 (2001), no. 2, 119-128.
  153. Peter C. Fishburn, Fred S. Roberts, Elementary sequences, sub-Fibonacci sequences, Discrete Applied Mathematics, Volume 44, Issues 1-3, 19 July 1993, Pages 261-281.
  154. Susanna Fishel, Elizabeth Milićević, Rebecca Patrias, Bridget Eileen Tenner, Enumerations relating braid and commutation classes, arXiv:1708.04372 [math.CO], 2017.
  155. M. J. Fisher et al., The birank number of a graph, Congressus Numerant., 204 (2010), 173-180.
  156. T. A. Fisher, A Caldero-Chapoton map depending on a torsion class, arXiv preprint arXiv:1510.07484, 2015
  157. Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Arxiv preprint arXiv:1110.6638, 2011
  158. Francesc Fite and Andrew V. Sutherland, Sato-Tate distributions of twists of y^2= x^5-x and y^2= x^6+1, Arxiv preprint arXiv:1203.1476, 2012.
  159. P. Flajolet, A Problem in Statistical Classification Theory, Studies in Automatic Combinatorics, Volume I (1996).
  160. P. Flajolet, Enumerating alcohols and other classes of chemical molecules, an example of Polya's theory , Studies in Automatic Combinatorics, Volume I (1996).
  161. P. Flajolet, Balls and Urns, Etc., Studies in Automatic Combinatorics, Volume I (1996).
  162. Philippe Flajolet, Eric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, arXiv:math.CO/0606370 A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics, Electron. J. Combin. 13 (2006), no. 1, Research Paper 103, 35 pp.
  163. Flajolet, Philippe; Gerhold, Stefan; Salvy, Bruno, On the non-holonomic character of logarithms, powers and the nth prime function. Electron. J. Combin. 11 (2004/06), no. 2, Article 2, 16 pp.
  164. P. Flajolet, K. Hatzis, S. Nikoletseas and P. Spirakis, On the Robustness of Interconnections in Random Graphs: A Symbolic Approach, Algorithms (Prague, 1999). Theoret. Comput. Sci. 287 (2002), no. 2, 515-534.
  165. P. Flajolet and M. Noy, Analytic Combinatorics of Noncrossing Configurations, Discrete Math. 204 (1999), 203-229 (Selected papers in honor of Henry W. Gould). The version available here is a preliminary version: INRIA RR3196, June 1997, 22 pages [ ps]. (Only the printed version mentions the On-Line Encyclopedia of Integer Sequences.)
  166. P. Flajolet, P. Poblete and A. Viola, On the Analysis of Linear Probing Hashing, (INRIA, RR3265), September 1997. 22 pages. In Algorithmica 22, (December 1998), pp. 490-515. (Special Issue on Analysis of Algorithms.)
  167. Philippe Flajolet, Helmut Prodinger, Level number sequences for trees, Discrete Mathematics, Volume 65, Issue 2, June 1987, Pages 149-156.
  168. P. Flajolet and B. Salvy, Computer algebra libraries for combinatorial structures. Journal of Symbolic Computation, vol. 20, no. 5-6, 1995, pages 653-671.
  169. P. Flajolet, B. Salvy and P. Zimmermann, Automatic average-case analysis of algorithms. Theoretical Computer Science, Series A, vol. 79, no. 1, February 1991, pages 37-109.
  170. P. Flajolet and R. Sedgewick, Analytic Combinatorics--Symbolic Combinatorics, 186p.+viii, May 2002.
  171. P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 810p.+xiv, January 2009.[1]
  172. Ryan Flanagan, Lucas Lacasa, Vincenzo Nicosia, On the spectral properties of Feigenbaum graphs, arXiv:1903.00754 [physics.data-an], 2019. (A144621)
  173. S. D. Flaten, Energy Efficient Reed-Solomon Error Correction, Master of Science in Electronics Dissertation, Norwegian University of Science and Technology, Trondheim, 2013; http://www.diva-portal.org/smash/get/diva2:655061/FULLTEXT01.pdf
  174. Daniel Flath, Tom Halverson, Kathryn Herbig, The planar rook algebra and Pascal's triangle, arXiv:0806.3960 [math.RT]
  175. Anthony Flatters, doi:10.1016/j.jnt.2008.05.008 Primitive Divisors of some Lehmer-Pierce Sequences] (2007), arXiv:0708.2190; Journal of Number Theory, Volume 129, Issue 1, January 2009, Pages 209-219.
  176. Anthony Flatters, Power Values of Certain Quadratic Polynomials (2009) arXiv:0901.3461 and J. Theor. Nombr. Bord. 22 (3) (2010) 645-660 doi:10.5802/jtnb.737
  177. A. Flaxman, A. W. Harrow and G. B. Sorkin, Strings with maximally many distinct subsequences and substrings (Citeseer), Electron. J. Combin. 11 (2004), no. 1, Research Paper 8, 10 pp.
  178. Martin Fleck, Javier Troya, Marouane Kessentini, Manuel Wimmer and Bader Alkhazi, Model Transformation Modularization as a Many-Objective Optimization Problem, IEEE Transactions on Software Engineering, (Volume: PP, Issue: 99) 2017. doi:10.1109/TSE.2017.2654255
  179. Lukas Fleischer, Samin Riasat, Jeffrey Shallit, New Bounds on Antipowers in Binary Words, arXiv:1912.08147 [cs.FL], 2019. (A275061, A330513)
  180. Lukas Fleischer, Jeffrey Shallit, Words With Few Palindromes, Revisited, arXiv:1911.12464 [cs.FL], 2019. (A000930, A164317, A329023, A329824, A330010, A330127, A330130, A330131, A330132)
  181. Pamela Fleischmann, Mitja Kulczynski, Dirk Nowotka, On Collapsing Prefix Normal Words, arXiv:1905.11847 [cs.FL], 2019. (A194850, A238109, A238110)
  182. Pamela Fleischmann, Mitja Kulczynski, Dirk Nowotka, Danny Bøgsted Poulsen, On Collapsing Prefix Normal Words, Language and Automata Theory and Applications (LATA 2020) LNCS Vol. 12038, Springer, Cham, 412-424. doi:10.1007/978-3-030-40608-0_29 (A194850, A238109, A238110, A308465)
  183. Pierre Flener, Justin Pearson, Solving necklace constraint problems, Journal of Algorithms, Volume 64, Issues 2-3, April-July 2009, Pages 61-73.
  184. Felix Flicker, Time Quasicrystals in Dissipative Dynamical Systems, arXiv:1707.09371 [nlin.CD], 2017. Also doi:10.21468/SciPostPhys.5.1.001 (A000129, A001353, A125905)
  185. Peter Floodstrand Blanchard, Pseudo-arithmetic sets and Ramsey theory, Journal of Combinatorial Theory, Series A, Volume 106, Issue 1, April 2004, Pages 49-57.
  186. Wojciech Florek, A class of generalized Tribonacci sequences applied to counting problems, Applied Mathematics and Computation (2018) Vol. 338, 809-821. doi:10.1016/j.amc.2018.06.014
  187. Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22(1), 2015. ["We would like to acknowledge the mathematical software Sage [44] and the Online Encyclopedia of Integer Sequences [33] which were both essential for our investigations."]
  188. R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
  189. Rigoberto Flórez, Robinson A. Higuita, Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, arXiv:1706.04247 [math.CO], 2017, also J. Int. Seq., Vol. 21 (2018), Article 18.4.6. HTML (A001511, A007814, A058071, A141678, A143088, A168570, A284115, A284126, A284127, A284128, A284129, A284130, A284131, A284413)
  190. Rigoberto Flórez, Robinson A. Higuita, Antara Mukherjee, The Geometry of some Fibonacci Identities in the Hosoya Triangle, arXiv:1804.02481 [math.NT], 2018. (A000032, A000045, A013655, A058071, A206610)
  191. Rigoberto Flórez, Robinson Higuita, Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018. (A001629, A001871, A006645, A045925, A093967, A317403, A317404, A317405, A317408, A317449, A317450, A317451)
  192. Rigoberto Flórez, Leandro Junes, José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2. PDF (A000108, A000984, A001006, A001700, A002426, A005572, A005573, A025230, A052177, A052178, A052179, A081671, A098410, A185132, A207823, A261711)
  193. Rigoberto Flórez, Leandro Junes, José L. Ramírez, Enumerating several aspects of non-decreasing Dyck paths, Discrete Mathematics (2019) Vol. 342, Issue 11, 3079-3097. doi:10.1016/j.disc.2019.06.018)
  194. Rigoberto Flórez, José L. Ramírez, Some enumerations on non-decreasing Motzkin paths, Australasian J. of Combinatorics (2018) Vol. 72(1), 138-154. PDF (A052534)
  195. Jean-Pierre Flori, Fonctions booleennes, courbes algebriques et multiplication complexe, Thesis, ParisTech, Feb 03 2012; http://www.infres.enst.fr/~flori/thesis/thesis.pdf
  196. Timothy B. Flowers, Extending a Recent Result on Hyper m-ary Partition Sequences, Journal of Integer Sequences, Vol. 20 (2017), #17.6.7.
  197. Dominique Foata and Guo-Niu Han, Dimers and new q-tangent numbers, Preprint, Oct. 2008.
  198. Dominique Foata and Guo-Niu Han, The dimer polynomial triangle, Preprint, Oct. 2008.
  199. D. Foata and G.-N. Han, doi:10.1007/s11139-009-9194-9 The doubloon polynomial triangle, Ramanujan J. 23 (2010) 107-126
  200. Dominique Foata and Guo-Niu Han, Multivariable Tangent and Secant q-derivative Polynomials, arXiv:1304.2486 http://www-irma.u-strasbg.fr/~foata/paper/pub119derivative.pdf
  201. Foata, Dominique and Han, Guo-Niu, Doubloons and new Q-tangent numbers. Q. J. Math. 62 (2011), no. 2, 417-432.
  202. D. Foata and G.-N. Han, Tree Calculus for Bivariable Difference Equations, 2012, http://www-irma.u-strasbg.fr/~foata/paper/pub120DeltaMatrices.pdf
  203. D. Foata and G.-N. Han, Secant Tree Calculus, arXiv preprint arXiv:1304.2485, 2013
  204. Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013; PDF
  205. Foata, Dominique; Han, Guo-Niu. doi:10.1080/10236198.2013.794794 Finite difference calculus for alternating permutations. J. Difference Equ. Appl. 19, No. 12, 1952-1966 (2013).
  206. D Foata, GN Han, Andre Permutation Calculus; a Twin Seidel Matrix Sequence, arXiv preprint arXiv:1601.04371, 2016
  207. D. Foata, G.-N. Han and B. Lass, Les nombres hyperharmoniques et la fratrie du collectionneur de vignettes, Sémin. Lothar. Comb. 47, B47a, 20 p., electronic only (2001).
  208. Foata, D. and Krattenthaler, C., Graphical Major Indices, II, Seminaire Lotharingien de Combinatoire, B34k, 16 pp., 1995.
  209. D. Foata and D. Zeilberger, The graphical major index, J. Comput. Applied Math (special issue on q-series) 68 (1996) 79-101.
  210. D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Combin. Theory Ser. A 80 (1997), no. 2, 380-384. (Note: the on-line version of this paper does not mention the Encyclopedia)
  211. Foissy, L., Finite-dimensional comodules over the Hopf algebra of rooted trees. J. Algebra 255 (2002), no. 1, 89-120.
  212. Foissy, L., Free and cofree Hopf algebras. J. Pure Appl. Algebra 216 (2012), no. 2, 480-494.
  213. Loïc Foissy, Ordered forests and parking functions. Int. Math. Res. Not. IMRN 2012, no. 7, 1603-1633.
  214. Loïc Foissy, The Hopf algebra of Fliess operators and its dual pre-Lie algebra, 2013; http://hal.archives-ouvertes.fr/docs/00/80/85/13/PDF/control.pdf.
  215. Foissy, Loic, doi:10.1016/j.aim.2013.03.007 Plane posets, special posets, and permutations. Adv. Math. 240, 24-60 (2013).
  216. Foissy, Loïc doi:10.1007/s10801-012-0358-0 Algebraic structures on double and plane posets. J. Algebr. Comb. 37, No. 1, 39-66 (2013).
  217. Loïc Foissy, Free quadri-algebras and dual quadri-algebras, preprint arXiv:1504.06056 (A007297, A085614, A078531)
  218. L. Foissy, arXiv:1811.07572 Algebraic structures on typed decorated rooted trees (2018)
  219. L. Foissy and C. Malvenuto, The Hopf algebra of finite topologies and T-partitions, arXiv preprint arXiv:1407.0476, 2014
  220. L. Foissy, C. Malvenuto, F. Patras, B_infinity-algebras, their enveloping algebras, and finite spaces, arXiv preprint arXiv:1403.7488, 2014
  221. Loic Foissy, Claudia Malvenuto, Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. <hal-00967351v2>.
  222. L. Foissy and F. Patras, Natural endomorphisms of shuffle algebras, Arxiv preprint arXiv:1205.2986, 2012.
  223. Robbert Fokkink, Dan Rust, A modification of Wythoff's Nim, arXiv:1904.08339 [math.CO], 2019.
  224. Amanda Folsom, S Garthwaite, SY Kang, H Swisher et al., Quantum mock modular forms arising from eta-theta functions, arXiv preprint arXiv:1604.00941, 2016
  225. A. Folsom, K. Ono and R. C. Rhoades, Ramanujan's radial limits, http://math.stanford.edu/~rhoades/FILES/ramanujans_radial.pdf, 2013.
  226. Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, arXiv:0906.3828. J. Eur. Math. Soc. (JEMS) 12 (2010), no. 6, 1453–1496.
  227. Fomin, Sergey; Reading, Nathan, Generalized cluster complexes and Coxeter combinatorics. Int. Math. Res. Not. 2005, no. 44, 2709-2757.
  228. T. Fonseca, F. Balogh, The higher spin generalization of the 6-vertex model with domain wall boundary conditions and Macdonald polynomials, Journal of Algebraic Combinatorics, 2014; doi:10.1007/s10801-014-0555-0
  229. Felix Fontein and Pawel Wocjan, Quantum Algorithm for Computing the Period Lattice of an Infrastructure, Arxiv preprint arXiv:1111.1348, 2011
  230. F. Fontein and P. Wocjan, On the Probability of Generating a Lattice, arXiv preprint arXiv:1211.6246, 2012.
  231. E. Fontich, C. Simó, A. Vieiro, On the "hidden" harmonics associated to best approximants due to quasiperiodicity in splitting phenomena, Regular and Chaotic Dynamics (2018), Pleiades Publishing, Vol. 23, Issue 6, 638–653. doi:10.1134/S1560354718060011 (A002210, A033089, A033090)
  232. Stefan Forcey, Convex Hull Realizations of the Multiplihedra (2007), arXiv:0706.3226; Topology and its Applications, Volume 156, Issue 2, 1 December 2008, Pages 326-347.
  233. S. Forcey, M. Kafashan, M. Maleki and M. Strayer, Recursive bijections for Catalan objects, arXiv preprint arXiv:1212.1188, 2012 and J. Int. Seq. 16 (2013) #13.5.3
  234. Stefan Forcey, Aaron Lauve, Frank Sottile, New Hopf Structures on Binary Trees, dmtcs:2740 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009)
  235. Stefan Forcey, Aaron Lauve, Frank Sottle, Cofree compositions of coalgebras (extended abstract), arXiv:1011.4305 [math.CO]
  236. Stefan Forcey, Aaron Lauve, Frank Sottle, Cofree compositions of coalgebras, arXiv:1012.3483; Annals of Combinatorics 17 (1) pp.105-130 March, 2013; http://www.combinatorics.net/Annals/Abstract/17_1_105.aspx
  237. Forcey, Stefan; Lauve, Aaron; and Sottile, Frank; Hopf structures on the multiplihedra. SIAM J. Discrete Math. 24 (2010), no. 4, 1250-1271.
  238. Stefan Forcey, M Ronco, P Showers, Polytopes and algebras of grafted trees: Stellohedra, arXiv preprint arXiv:1608.08546, 2016.
  239. Kevin Ford, On integers n for which n does not divide P(n)!, University of Illinois at Urbana-Champaign (2019). PDF (A057109)
  240. Kevin Ford, Solutions of φ(n) = φ(n + k) and σ(n) = σ(n + k), arXiv:2002.12155 [math.NT], 2020. See also University of Illinois at Urbana-Champaign PDF. (A001274, A001494, A179186, A179187, A179188, A179189, A179202, A217139, A276503, A276504, A330251, A330429)
  241. Kevin Ford, Sergei Konyagin, Divisibility of the central binomial coefficient binomial(2n, n), arXiv:1909.03903 [math.NT], 2019. See also Divisibility of the central binomial coefficient binomial(2n, n), University of Illinois at Urbana-Champaign (2019). PDF (A014847, A121943, A282163, A282672, A283073, A283074)
  242. Kevin Ford, Florian Luca and Pieter Moree, Values of the Euler phi-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, Arxiv preprint arXiv:1108.3805, 2011.
  243. A. P. Fordy, Mutation-periodic quivers, integrable maps and associated Poisson algebras, Phil Trans. R. Soc. Lond. Ser A (Math. Phys. Eng. Sci.) 369 (1939) (2011) 1264-1279 doi:10.1098/rsta.2010.0318
  244. A. P. Fordy, Periodic Cluster Mutations and Related Integrable Maps, arXiv preprint arXiv:1403.8061, 2014
  245. A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps, Arxiv preprint arXiv:1207.6072, 2012
  246. Allan P. Fordy and Robert J. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences, arXiv:0904.0200; J. Algebraic Combin. 34 (2011), no. 1, 19-66.
  247. Foreman, Erika D., "Order automorphisms on the lattice of residuated maps of some special nondistributive lattices." (2015). Univ. Louisville, Electronic Theses and Dissertations. Paper 2257. doi:10.18297/etd/2257; http://ir.library.louisville.edu/cgi/viewcontent.cgi?article=3214&context=etd
  248. Roman Forker, Matthias Meissner, and Torsten Fritz, Classification of epitaxy in reciprocal and real space: rigid versus flexible lattices, Soft Matter, 13(9), 2017, pp. 1748-1758. doi:10.1039/c6sm02688e
  249. P. J. Forrester, A. Mays, Finite size corrections in random matrix theory and Odlyzko's data set for the Riemann zeros, arXiv preprint arXiv:1506.06531, 2015
  250. Richard Fors, Independence Complexes of Certain Families of Graphs, Master thesis in Mathematics at KTH, Presented August 19, 2011; http://www.math.kth.se/xComb/fors.pdf.
  251. L. Forsberg, Effective representations of Hecke-Kiselman monoids of type A, Arxiv preprint arXiv:1205.0676, 2012
  252. M. Forsyth, A. Jayakumar, J. Shallit, Remarks on Privileged Words, arXiv preprint arXiv:1311.7403, 2013
  253. J. Fortier, A. Goupil, J. Lortie and J. Tremblay, Exhaustive generation of gominoes, Theoretical Computer Science, 2012; doi:10.1016/j.tcs.2012.02.032
  254. D. Fortin, B-SPLINE TOEPLITZ INVERSE UNDER CORNER PERTURBATIONS, International Journal of Pure and Applied Mathematics, Volume 77, No. 1, 2012, 107-118; http://ijpam.eu/contents/2012-77-1/11/11.pdf.
  255. Dominique Fortin, Computing Means and Rodrigues' coefficients in the group of orthogonal matrices, (2019). doi:10.13140/RG.2.2.31042.22723 (A000027, A000217, A000292)
  256. P. Fortuny Ayuso, J. M. Grau, A. Oller-Marcen, A von Staudt-type formula for sum(z in Z_n[i]) z^k, arXiv:1402.0333
  257. P. Fortuny, J.M. Grau, A.M. Oller-Marcén, I.F. Rúa, arXiv:1505.08132 On power sums of matrices over a finite commutative ring, arXiv preprint, 2015. (A017593)
  258. Colin Foster, Peripheral mathematical knowledge, For the Learning of Mathematics, vol. 31, #3 (November, 2011), pp. 24-28; PDF.
  259. B. Foster-Greenwood, C. Kriloff, Spectra of Cayley Graphs of Complex Reflection Groups, arXiv preprint arXiv:1502.07392, 2015
  260. F. Foucaud, R. Klasing, P.J. Slater, Centroidal bases in graphs, arXiv preprint arXiv:1406.7490, 2014
  261. Etienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017. (A000404, A064533, A073010, A101455, A196530)
  262. Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823, 2014
  263. Nathan Fox, Finding Linear-Recurrent Solutions to Hofstadter-Like Recurrences Using Symbolic Computation, arXiv:1609.06342, 2016.
  264. Nathan Fox, A Slow Relative of Hofstadter's Q-Sequence, arXiv preprint arXiv:1611.08244, 2016.
  265. Nathan Fox, A New Approach to the Hofstadter Q-Recurrence, arXiv:1807.01365 [math.NT], 2018. (A005185)
  266. Nathan Fox, A New Approach to the Hofstadter Q-Recurrence, Integers (2020) Vol. 20A, Article #A8.
  267. Norman B. Fox, Combinatorial Potpourri: Permutations, Products, Posets, and Pfaffians, University of Kentucky, Theses and Dissertations, Mathematics, Paper 25. (A081091)
  268. Fraenkel, Aviezri S. "Iterated floor function, algebraic numbers, discrete chaos, Beatty subsequences, semigroups." Transactions of the American Mathematical Society 341.2 (1994): 639-664.
  269. A. S. Fraenkel, arXiv:math.CO/9809074 Heap games, numeration systems and sequences, Annals of Combinatorics, 2 (1998) 197-210.
  270. A. S. Fraenkel, Arrays, numeration systems and Frankenstein games, FUN with algorithms (Elba, 1998). Theoret. Comput. Sci. 282 (2002), no. 2, 271-284.
  271. A. S. Fraenkel, Mathematical Chats Between Two Physicists, in Puzzlers' Tribute: A Feast for the Mind, honoring Martin Gardner (D. Wolfe and T. Rodgers, eds.), A. K. Peters, 2002, pp. 315-325.
  272. A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
  273. A. S. Fraenkel, From enmity to amity, Amer. Math. Monthly, 117 (2010) , 646-648. [The Abstract begins "Sloane's influential On-Line Encyclopedia of Integer Sequences is an indispensable research tool in the service of the mathematical community..."]
  274. Aviezri S. Fraenkel, The vile, dopy, evil and odious game players, Discrete Math., 312 (2011), 42-46.
  275. Aviezri S. Fraenkel, Aperiodic subtraction games, El. J. Combin. 18 (2) (2011) #P19
  276. A. S. Fraenkel, Ratwyt, 2011; http://www.wisdom.weizmann.ac.il/~fraenkel/Papers/RationalGames3.pdf. Also The College Mathematics Journal, Vol. 43, No. 2 (March 2012), pp. 160-164.
  277. Aviezri S. Fraenkel and Urban Larsson, Playability and arbitrarily large rat games, arXiv:1705.03061 [math.CO], 2017.
  278. Alberto Fraile, R Martinez, D Fernandez, Jacob's Ladder: Prime numbers in 2d, arXiv preprint arXiv:1801.01540, 2017
  279. Nevena Francetić, Sarada Herke, Ian M. Wanless, Parity of Sets of Mutually Orthogonal Latin Squares, arXiv:1703.04764 [math.CO], 2017.
  280. Francisco, Christopher A.; Mermin, Jeffrey; Schweig, Jay; Borel generators. J. Algebra 332 (2011), 522-542.
  281. C. A. Francisco, J. Mermin, J. Schweig, Catalan numbers, binary trees, and pointed pseudotriangulations, 2013; https://www.math.okstate.edu/~jayjs/ppt.pdf
  282. F. Franek, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Yu Sun and L. Yang, Verifying a border array in linear time, J. Combinatorial Math. and Combinatorial Computing 42 (2002) to appear.
  283. Shakuan Frankson, Myka Terry, Investigating First Returns: The Effect of Multicolored Vectors, arXiv:1811.02707 [math.CO], 2018.
  284. Ghislain R. Franssens, "On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles", J. Integer Sequences, Volume 9, 2006, Article 06.4.1.
  285. Z. Franusic, On the Extension of the Diophantine Pair {1,3} in Z[surd d], J. Int. Seq. 13 (2010) # 10.9.6.
  286. Matthias Franz, The cohomology rings of homogeneous spaces, arXiv:1907.04777 [math.AT], 2019. Acknowledgements. The connection between tensor products of A-maps and hypercubes (Remark 4.2) was discovered by consulting the OEIS.
  287. H Franzen, T Weist, The Value of the Kac Polynomial at One, arXiv preprint arXiv:1608.03419, 2016
  288. Fabrizio Frati, M Patrignani, V Roselli, LR-Drawings of Ordered Rooted Binary Trees and Near-Linear Area Drawings of Outerplanar Graphs, arXiv preprint arXiv:1610.02841, 2016
  289. J. Freeman, MetaMix: Between Unity and Collaboration.
  290. W. Freeman, A method for the compact and efficient encoding of ordinal primes, YCS technical report, 2003.
  291. D. Frettlöh, Highly symmetric fundamental cells for lattices in R^2 and R^3, arXiv:1305.1798, 2013.
  292. Dirk Frettlöh, Chs. 1.5 and 3.5 in Aperiodic Order, Cambridge, Michael Baake and Uwe Grimm, eds., 2017, pages 9 and 105. doi:10.1017/9781139033862
  293. J. Freixas and S. Kurz, The golden number and Fibonacci sequences in the design of voting structures, PDF, 2012.
  294. Darrin D. Frey and James A. Sellers, "Jacobsthal Numbers and Alternating Sign Matrices", J. Integer Sequences, Volume 3, 2000, Article 00.2.3.
  295. Darrin D. Frey and James A. Sellers, "On Powers of 2 Dividing the Values of Certain Plane Partition Functions", J. Integer Sequences, Volume 4, 2001, Article 01.1.8.
  296. Peter J. Freyd, Core algebra revisited, Theoretical Computer Science, 375 (2007), Issues 1-3, 193-200.
  297. Dylan Fridman et al., A prime-representing constant, Amer. Math. Monthly 126 (2019), 72-73.
  298. Erich Friedman and Mike Keith, "Magic Carpets", J. Integer Sequences, Volume 3, 2000, Article 00.2.5.
  299. Friedman, H. M. (2018). Concrete Mathematical Incompleteness: Basic Emulation Theory. In Hilary Putnam on Logic and Mathematics (pp. 179-234). Springer, Cham. doi:10.1007/978-3-319-96274-0_12 (A000670)
  300. Tamar Friedmann, JR Harper, On H-Spaces and a Congruence of Catalan Numbers, arXiv preprint arXiv:1612.03837, 2016
  301. Theresa L. Friedman, Paul Klingsberg. Combinatorial identities by way of Wilf's multigraph model. Intl J. Math. Math. Sci 96327 (2006) doi:10.1155/IJMMS/2006/96327
  302. Fritzsche, Bernd; Kirstein, Bernd; Mädler, Conrad On Hankel nonnegative definite sequences, the canonical Hankel parametrization, and orthogonal matrix polynomials. Complex Anal. Oper. Theory 5 (2011), no. 2, 447-511
  303. B. Fritzsche, B. Kirstein and C. Madler, On a Schur-type Algorithm for Sequences of Complex p×q-matrices and its Interrelations with the Canonical Hankel Parametrization, pp. 117-192 in Interpolation, Schur Functions and Moment Problems II, Daniel Alpay, Bernd Kirstein (eds.), Operator Theory: Advances and Applications, Vol. 226, 211-250, 2112, Birkhauser Basel.
  304. B. Fritzsche, B. Kirstein and C. Madler, On a Special Parametrization of Matricial alpha-Stieltjes One-sided Non-negative Definite Sequences, in Interpolation, Schur Functions and Moment Problems II, Daniel Alpay, Bernd Kirstein (eds.), Operator Theory: Advances and Applications, Vol. 226, 211-250, 2112, Birkhauser Basel.
  305. J. Fromentin, Exploring the tree of numerical semigroups, 2013, http://hal.archives-ouvertes.fr/docs/00/82/33/39/PDF/article.pdf
  306. Robert Frontczak, Sums of Tribonacci and Tribonacci-Lucas Numbers, International Journal of Mathematical Analysis, Vol. 12 (2018), No. 1, pp. 19-24. doi:10.12988/ijma.2018.712153 (A000073, A001644, A005277)
  307. Robert Frontczak, Convolutions for Generalized Tribonacci Numbers and Related Results, International Journal of Mathematical Analysis (2018) Vol. 12, Issue 7, 307-324. doi:10.12988/ijma.2018.8429 (A000073, A001644)
  308. Robert Frontczak, A Note on Hybrid Convolutions Involving Balancing and Lucas-Balancing Numbers, Applied Mathematical Sciences, Vol. 12, 2018, No. 25, 1201-1208. doi:10.12988/ams.2018.87111 (A001109, A001541)
  309. Robert Frontczak, Sums of Balancing and Lucas-Balancing Numbers with Binomial Coefficients, Int'l J. of Math. Analysis (2018) Vol. 12, No. 12, 585-594. arXiv:1811.xxxxx PDF (A001109, A001541)
  310. Robert Frontczak, Powers of Balancing Polynomials and Some Consequences for Fibonacci Sums, International Journal of Mathematical Analysis (2019) Vol. 13, No. 3, 109-115. doi:10.12988/ijma.2019.9211 (A001109, A001541)
  311. Robert Frontczak, Identities for generalized balancing numbers, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 2, 169-180. PDF (A000032, A000045, A001109, A001541)
  312. Andrea Frosini, Giulia Palma, Elisa Pergola, Simone Rinaldi, A study on the fixed points of the γ function, arXiv:1911.04795 [math.CO], 2019.
  313. A. Frosini and S. Rinaldi, "On the Sequence A079500 and Its Combinatorial Interpretations", J. Integer Sequences, Volume 9, 2006, Article 06.3.1.
  314. Christiane Frougny, Edita Pelantová, and Milena Svobodová, "Minimal Digit Sets for Parallel Addition in Non-Standard Numeration Systems", Journal of Integer Sequences, Vol. 16 (2013), #13.2.17.
  315. Timothy J Frye, Recursive Relationships in the Classes of Odd Graphs and Middle Levels Graphs, arXiv preprint arXiv:1611.06401, 2016
  316. Amy M. Fu, A Context-free Grammar for Peaks and Double Descents of Permutations, arXiv:1801.04397 [math.CO], 2018. (A008971)
  317. Amy M. Fu, Frank Z.K. Li, Joint Distributions of Permutation Statistics and the Parabolic Cylinder Functions, arXiv:1809.07465 [math.CO], 2018. (A000085, A008971)
  318. Hao Fu, GN Han, Computer assisted proof for Apwenian sequences related to Hankel determinants, arXiv preprint arXiv:1601.04370, 2016
  319. H.-L. Fu, Y.-H. Lo and K. W. Shum, Optimal conflict-avoiding codes of odd length and weight three, Designs, Codes and Cryptography, Nov. 2012; doi:10.1007/s10623-012-9764-5.
  320. Shishuo Fu, Emma Yu Jin, Zhicong Lin, Sherry H.F. Yan, Robin D.P. Zhou, A new decomposition of ascent sequences and Euler-Stirling statistics, arXiv:1909.07277 [math.CO], 2019. (A022493)
  321. Shishuo Fu, Z. Lin, J. Zeng, Two new unimodal descent polynomials, arXiv preprint arXiv:1507.05184, 2015
  322. Shishuo Fu, Zhicong Lin, Jiang Zeng, On two unimodal descent polynomials, Discrete Mathematics (2018), Vol. 341, Issue 9, 2616-2626. doi:10.1016/j.disc.2018.06.010
  323. Shishuo Fu and James Sellers, Enumeration of the degree sequences of line-Hamiltonian multigraphs, INTEGERS 12 (2012), #A24.
  324. Shishuo Fu, D Tang, Partitions with fixed largest hook length, arXiv preprint arXiv:1604.04028, 2016
  325. Shishuo Fu, Dazhao Tang, Generalizing a partition theorem of Andrews, arXiv:1705.05046, 2017 [math.CO]
  326. Shishuo Fu, Dazhao Tang, Bin Han, Jiang Zeng, Gamma expansions of q-Narayana polynomials, pattern avoidance and the (−1)-phenomenon. arXiv:1805.08945 [math.CO], 2018. (A027307, A032349, A084868)
  327. Shishuo Fu, Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019. (A000007, A000012, A000079, A000108, A000244, A000957, A001003, A001700, A006318, A007318, A007564, A010054, A033184, A038207, A039598, A047891, A065600, A080247, A104219, A108524, A114709, A114710, A130595)
  328. Shishuo Fu, Yaling Wang, Bijective proofs of recurrences involving two Schröder triangles, European Journal of Combinatorics (2020) 103077. doi:10.1016/j.ejc.2019.103077
  329. Yixing Fu, E. J. König, J. H. Wilson, Yang-Zhi Chou, J. H. Pixley, Magic-angle semimetals, arXiv:1809.04604 [cond-mat.str-el], 2018. (A001076)
  330. Michael Fuchs, Guan-Ru Yu, Louxin Zhang, On the Asymptotic Growth of the Number of Tree-Child Networks, arXiv:2003.08049 [math.CO], 2020. (A213863)
  331. Y. Fujiwara, Parsing a Sequence of Qubits, IEEE Trans. Information Theory, 59 (2013), 6796-6806.
  332. Henryk Fukś, "Magic Squares of Subtraction of Adam Adamandy Kochański", in Research in History and Philosophy of Mathematics, Proceedings of the Canadian Society for History and Philosophy of Mathematics (CSHPM), 2017. doi:10.1007/978-3-319-64551-3_6 (A191642)
  333. H. Fukś, Adam Adamandy Kochanski's approximations of pi: reconstruction of the algorithm, Arxiv preprint arXiv:1111.1739, 2011. Also The Mathematical Intelligencer, December 2012, Volume 34, Issue 4, pp. 40-45.
  334. H. Fukś and J. M. G. Soto, Exponential convergence to equilibrium in cellular automata asymptotically emulating identity, arXiv preprint arXiv:1306.1189, 2013
  335. Motohisa Fukuda, Ion Nechita, Enumerating meandric systems with large number of components, arXiv preprint arXiv:1609.02756, 2016
  336. Neale L. Fulton, Mark Westcott, Warren F. Smith, Constructing a Feasible Design Space for Multiple Cluster Conflict and Taskload Assessment, In: Sarker R., Abbass H., Dunstall S., Kilby P., Davis R., Young L. (eds) Data and Decision Sciences in Action, Lecture Notes in Management and Industrial Engineering. doi:10.1007/978-3-319-55914-8_15
  337. Fusy, Éric, Counting d-polytopes with d+3 vertices. Electron. J. Combin. 13 (2006), no. 1, Research Paper 23, 25 pp.
  338. Éric Fusy, Luca Lionni, Adrian Tanasa, Combinatorial study of graphs arising from the Sachdev-Ye-Kitaev model, arXiv:1810.02146 [math.CO], 2018. (A062980)

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

Notes