|
|
A026375
|
|
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).
|
|
52
|
|
|
1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, 1936881, 9238023, 44241261, 212601015, 1024642875, 4950790605, 23973456915, 116312293305, 565280386625, 2751474553575, 13411044301945, 65448142561035, 319756851757695
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=0; also a(n)=T(2n,n).
Partial sums of A085362. Number of bilateral Schroeder paths (i.e., lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at odd (positive or negative) levels. Example: a(2)=11 because we have HUD, UDH, UDUD, UUDD, UDDU, their reflections in the x-axis and HH. - Emeric Deutsch, Jan 30 2004
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in three colors. - N-E. Fahssi, Feb 05 2008
Equals INVERT transform of A109033: (1, 2, 6, 22, 88, ...), INVERTi transform of A111966, binomial transform of A000984, and inverse Binomial transform of A081671. Convolved with A002212: (1, 3, 10, 36, ...) = A026376: (1, 6, 30, 144, ...). Equals convolution square root of A003463: (1, 6, 31, 156, 781, 3906, ...). - Gary W. Adamson, May 17 2009
Diagonal of array with rational generating function 1/(1 - (x^2 + 3*x*y + y^2)). - Gheorghe Coserea, Jul 29 2018
|
|
LINKS
|
|
|
FORMULA
|
Representation by Gauss's hypergeometric function, in Maple notation: a(n)=hypergeom([ -n, 1/2 ], [ 1 ], -4). - Karol A. Penson, Apr 20 2001
E.g.f.: exp(3*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 17 2002
D-finite with recurrence: n*a(n)-3*(2*n-1)*a(n-1)+5*(n-1)*a(n-2)=0 for n > 1. - Emeric Deutsch, Jan 24 2004
a(n) = [t^n](1+3*t+t^2)^n;
a(n) = Sum_{j=ceiling(n/2)..n} 3^(2*j-n)*binomial(n, j)*binomial(j, n-j). (End)
G.f.: 1/(1-x-2*x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x... (continued fraction). - Paul Barry, Jan 06 2009
a(n) = sum of squared coefficients of (1+x-x^2)^n - see triangle A084610. - Paul D. Hanna, Jul 18 2009
a(n) = sum of squares of coefficients of (1-x-x^2)^n. - Joerg Arndt, Jul 06 2011
a(n) = (1/Pi)*Integral_{x=-2..2} ((3+x)^n/sqrt((2-x)*(2+x))) dx. - Peter Luschny, Sep 12 2011
G.f.: G(0)/(1-x), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
0 = a(n)*(+25*a(n+1) - 45*a(n+2) + 10*a(n+3)) + a(n+1)*(-15*a(n+1) + 36*a(n+2) - 9*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 11 2014
a(n) = Sum_{k=0..n} 5^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (1 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (5 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + ... is the o.g.f. of A002212.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
|
|
EXAMPLE
|
G.f. = 1 + 3*x + 11*x^2 + 45*x^3 + 195*x^4 + 873*x^5 + 3989*x^6 + ...
|
|
MAPLE
|
seq( add(binomial(n, k)*binomial(2*k, k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
a := n -> simplify(GegenbauerC(n, -n, -3/2)):
|
|
MATHEMATICA
|
Table[SeriesCoefficient[1/Sqrt[1-6*x+5*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2012 *)
a[ n_] := Sum[ Binomial[n, k] Binomial[2 k, k], {k, 0, n}];
a[ n_] := If[ n < 0, 0, Hypergeometric2F1[-n, 1/2, 1, -4]];
a[ n_] := If[ n < 0, 0, Coefficient[(1 + 3 x + x^2)^n, x, n]];
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[Exp[3 x] BesselI[0, 2 x], {x, 0, n}]];
(* (End) *)
|
|
PROG
|
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 + 3*x + x^2)^n, n))}; /* Michael Somos, Sep 09 2002 */
(Maxima) A026375(n):=coeff(expand((1+3*x+x^2)^n), x, n);
(PARI) a(n)={my(v=Vec((1-x-x^2)^n)); sum(k=1, #v, v[k]^2); } \\ Joerg Arndt, Jul 06 2011
(PARI) {a(n) = sum(k=0, n, 5^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
(PARI) {a(n) = sum(k=0, n\2, 3^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
(Haskell)
(GAP) List([0..25], n->Sum([0..n], k->Binomial(n, k)*Binomial(2*k, k))); # Muniru A Asiru, Jul 29 2018
|
|
CROSSREFS
|
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|