login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104454
Expansion of 1/(sqrt(1-5x)*sqrt(1-9x)).
11
1, 7, 51, 385, 2995, 23877, 194109, 1602447, 13389075, 112935445, 959783881, 8206116387, 70507643101, 608271899515, 5265458413875, 45711784088145, 397829544860115, 3469772959954245, 30319709631711225, 265383615634224675, 2326318766651511945, 20419439617056272415
OFFSET
0,2
COMMENTS
Fifth binomial transform of A000984. In general, the k-th binomial transform of A000984 will have g.f. 1/(sqrt(1-k*x)*sqrt(1-(k+4)*x)) and a(n)=sum{i=0..n, C(n,i)C(2i,i)k^(n-i)}.
Diagonal of rational function 1/(1 - (x^2 + 7*x*y + y^2)). - Gheorghe Coserea, Aug 03 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
G.f.: 1/sqrt(1-14*x+45*x^2).
E.g.f.: exp(7x)*BesselI(0, 2x)
a(n) = Sum_{k=0..n} 5^(n-k)*binomial(n,k)*binomial(2k,k).
D-finite with recurrence: n*a(n) = 7*(2*n-1)*a(n-1) - 45*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n+1)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012
a(n) = Sum_{k=0..n} 9^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 7^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
MATHEMATICA
CoefficientList[Series[1/(Sqrt[1-5x] Sqrt[1-9x]), {x, 0, 30}], x] (* Harvey P. Dale, Apr 11 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(1/sqrt(1-14*x+45*x^2)) \\ Joerg Arndt, May 13 2013
(PARI) {a(n) = sum(k=0, n, 9^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
(PARI) {a(n) = sum(k=0, n\2, 7^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
CROSSREFS
Column 7 of A292627.
Sequence in context: A162757 A285880 A147958 * A332936 A222849 A273055
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 08 2005
STATUS
approved