login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332936
Number of blue nodes in n-th power graph W exponentiation of a cycle graph with 7 blue nodes and 1 green node.
1
7, 51, 387, 2943, 22383, 170235, 1294731, 9847143, 74892951, 569602179, 4332138579, 32948302095, 250590001023, 1905875101899, 14495230812123, 110244221191287, 838468077093927, 6377011953177555, 48500691394138659, 368874495293576607, 2805493888166196879, 21337327619448845211
OFFSET
0,1
COMMENTS
The series of green nodes in n-th power W exponentiation for all n<6 n blue 1 green, 2 edge per node graphs already corresponds with an existing OEIS sequence (empirical). For example the number of blue nodes in n-th power W exponentiation of a square containing 3 blue nodes and 1 green node corresponds to A163063.
FORMULA
g(n) = g(n-1) + 2*a(n-1), a(n) = 2*g(n-1) + 7*a(n-1) with g(0) = 1 and b(0) = 7, where g(n) = A332211(n).
From Colin Barker, Mar 03 2020: (Start)
G.f.: (1 + 43*x - 18*x^2) / (1 - 8*x + 3*x^2).
a(n) = 8*a(n-1) - 3*a(n-2) for n > 1.
(End)
From Stefano Spezia, Mar 03 2020: (Start)
a(n) = ((4 - sqrt(13))^n*(-23 + 7*sqrt(13)) + (4 + sqrt(13))^n*(23 + 7*sqrt(13)))/(2*sqrt(13)).
E.g.f.: exp(4*x)*(91*cosh(sqrt(13)*x) + 23*sqrt(13)*sinh(sqrt(13)*x))/13.
(End)
a(n) = 7*A190976(n+1) -5*A190976(n). - R. J. Mathar, Apr 30 2020
EXAMPLE
For n = 2 take g(1)=15 and b(1)=51. Multiply b(1) by 7 to get 357 add 30 to get 387.
For n = 3 take g(2)=117 and b(2)=387. Multiply b(2) by 7 to get 774 add 234 to get 2943.
PROG
(Python)
g=1
b=7
sg=0
sb=0
bl=[]
gl=[]
for int in range(1, 20):
sg=g*1+b*2
sb=b*7+g*2
g=sg
b=sb
gl.append(g)
bl.append(b)
print(bl)
(PARI) Vec((1 + 43*x - 18*x^2) / (1 - 8*x + 3*x^2) + O(x^40)) \\ Colin Barker, Mar 03 2020
CROSSREFS
Cf. A331211.
Sequence in context: A285880 A147958 A104454 * A222849 A273055 A019472
KEYWORD
nonn,easy
AUTHOR
STATUS
approved