login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332211
Lexicographically earliest permutation of primes such that a(n) = 2^n - 1 when n is one of the Mersenne prime exponents (in A000043).
8
2, 3, 7, 5, 31, 11, 127, 13, 17, 19, 23, 29, 8191, 37, 41, 43, 131071, 47, 524287, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 2147483647, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 2305843009213693951, 269, 271, 277, 281, 283, 293, 307, 311, 313
OFFSET
1,1
COMMENTS
Sequence is well-defined also in case there are only a finite number of Mersenne primes.
LINKS
FORMULA
For all applicable n >= 1, a(A000043(n)) = A000668(n).
EXAMPLE
For p in A000043: 2, 3, 5, 7, 13, 17, 19, ..., a(p) = (2^p)-1, thus a(2) = 2^2 - 1 = 3, a(3) = 7, a(5) = 31, a(7) = 127, a(13) = 8191, a(17) = 131071, etc., with the rest of positions filled by the least unused prime:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...
2, 3, 7, 5, 31, 11, 127, 13, 17, 19, 23, 29, 8191, 37, 41, 43, 131071, ...
PROG
(PARI)
up_to = 127;
A332211list(up_to) = { my(v=vector(up_to), xs=Map(), i=1, q); for(n=1, up_to, if(isprime(q=((2^n)-1)), v[n] = q, while(mapisdefined(xs, prime(i)), i++); v[n] = prime(i)); mapput(xs, v[n], n)); (v); };
v332211 = A332211list(up_to);
A332211(n) = v332211[n];
\\ For faster computing of larger values, use precomputed values of A000043:
v000043 = [2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217];
up_to = v000043[#v000043];
A332211list(up_to) = { my(v=vector(up_to), xs=Map(), i=1, q); for(n=1, up_to, if(vecsearch(v000043, n), q = (2^n)-1, while(mapisdefined(xs, prime(i)), i++); q = prime(i)); v[n] = q; mapput(xs, q, n)); (v); };
CROSSREFS
Cf. A000040, A000043, A000668, A332210 (inverse permutation of primes), A332220.
Used to construct permutations A332212, A332214.
Sequence in context: A085399 A063696 A258126 * A353075 A069587 A059843
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 09 2020
STATUS
approved