login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063696
Positions of positive coefficients in cyclotomic polynomial Phi_n(x), converted from binary to decimal.
5
0, 2, 3, 7, 5, 31, 5, 127, 17, 73, 21, 2047, 17, 8191, 85, 297, 257, 131071, 65, 524287, 273, 4681, 1365, 8388607, 257, 1082401, 5461, 262657, 4369, 536870911, 387, 2147483647, 65537, 1198665, 87381, 17454241, 4097, 137438953471, 349525
OFFSET
0,2
COMMENTS
Maple procedures Phi_pos_terms and Phi_neg_terms are modeled after the formula given in Lam and Leung paper and they compute correct results for all integers x > 1 and for all n with at most two distinct odd prime factors (that is, up to n=104). Other procedures as in A063698 and A063694.
LINKS
D. M. Bloom, On the Coefficients of the Cyclotomic Polynomials, Amer.Math.Monthly 75, 372-377, 1968.
T. Y. Lam and K. H. Leung, On the Cyclotomic Polynomial Phi_pq(X), Amer.Math.Monthly 103, 562-564, August-September 1996.
H. W. Lenstra, Vanishing sums of roots of unity, in Proc. Bicentennial Congress Wiskundig Genootschap (Vrije Univ. Amsterdam, 1978), Part II, pp. 249-268.
MAPLE
with(numtheory); [seq(Phi_pos_terms(j, 2), j=0..104)];
inv_p_mod_q := (p, q) -> op(2, op(1, msolve(p*x=1, q))); # Find's p's inverse modulo q.
dilate := proc(nn, x, e) local n, i, s; n := nn; i := 0; s := 0; while(n > 0) do s := s + (((x^e)^i)*(n mod x)); n := floor(n/x); i := i+1; od; RETURN(s); end;
Phi_pos_terms := proc(n, x) local a, m, p, q, e, f, r, s; if(n < 2) then RETURN(x); fi; a := op(2, ifactors(n)); m := nops(a); p := a[1][1]; e := a[1][2]; if(1 = m) then RETURN(((x^(p^e))-1)/((x^(p^(e-1)))-1)); fi; if(2 = m) then q := a[2][1]; f := a[2][2]; r := inv_p_mod_q(p, q)-1; s := inv_p_mod_q(q, p)-1; RETURN( (`if`(0=s, 1, (((x^((s+1)*((q^f)*(p^(e-1)))))-1)/((x^((q^f)*(p^(e-1))))-1)))) * (`if`(0=r, 1, (((x^((r+1)*((p^e)*(q^(f-1)))))-1)/((x^((p^e)*(q^(f-1))))-1)))) ); fi; if((3 = m) and (2 = p)) then if(1 = e) then RETURN(every_other_pos(Phi_pos_terms(n/2, x), x, 0)+every_other_pos(Phi_neg_terms(n/2, x), x, 1)); else RETURN(dilate(Phi_pos_terms((n/(2^(e-1))), x), x, 2^(e-1))); fi; else printf(`Cannot handle argument %a with three or more distinct odd prime factors!\n`, n); RETURN(0); fi; end;
MATHEMATICA
a[n_] := 2^(Flatten[Position[CoefficientList[Cyclotomic[n, x], x], _?Positive]] - 1) // Total; a[0] = 0; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 05 2016 *)
PROG
(PARI) a(n)=local(p); if(n<1, 0, p=polcyclo(n); sum(i=0, n, 2^i*(polcoeff(p, i)>0)))
CROSSREFS
Cf. A013594, A063697 (binary version), A063698 (negative terms), A063670 (nonzero terms).
A019320(n) = a(n) - A063698(n) for up to n=104.
Sequence in context: A153488 A275115 A085399 * A258126 A332211 A353075
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 03 2001
STATUS
approved