OFFSET
0,3
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Ralf Stephan, Some divide-and-conquer sequences ...
Ralf Stephan, Table of generating functions
FORMULA
a(n) + A063694(n) = n.
a(n) = 2*(floor(n/2)-a(floor(n/2))). - Vladeta Jovovic, Feb 23 2003
From Ralf Stephan, Oct 06 2003: (Start)
G.f. 1/(1-x) * Sum_{k>=0} (-2)^k*2t^2/(1-t^2) where t = x^2^k.
Members of A004514 written twice.
(End)
a(n) = 4 * a(floor(n / 4)) + 2 * floor(n mod 4 / 2). - Reinhard Zumkeller, Sep 26 2015
a(n) = A090569(n+1)-1. - R. J. Mathar, Jun 22 2020
EXAMPLE
a(25) = 8 because 25 = 11001 in binary and when we AND this with 1010 we are left with 1000 = 8.
MAPLE
[seq(every_other_pos(j, 2, 1), j=0..120)]; # Function every_other_pos given at A063694.
PROG
(Haskell)
a063695 0 = 0
a063695 n = 4 * a063695 n' + 2 * div q 2
where (n', q) = divMod n 4
-- Reinhard Zumkeller, Sep 26 2015
(Python)
def A063695(n): return n&((1<<(m:=n.bit_length())+(m&1^1))-1)//3 # Chai Wah Wu, Jan 30 2023
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Antti Karttunen, Aug 03 2001
STATUS
approved