The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081417 A000720 applied to Pascal-triangle: Pi[C(n,j)], j,0..n and n=0,1,2,... 2
 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 2, 3, 2, 0, 0, 3, 4, 4, 3, 0, 0, 3, 6, 8, 6, 3, 0, 0, 4, 8, 11, 11, 8, 4, 0, 0, 4, 9, 16, 19, 16, 9, 4, 0, 0, 4, 11, 23, 30, 30, 23, 11, 4, 0, 0, 4, 14, 30, 46, 54, 46, 30, 14, 4, 0, 0, 5, 16, 38, 66, 89, 89, 66, 38, 16, 5, 0, 0, 5, 18, 47, 94, 138, 157, 138, 94 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS G. C. Greubel, Rows n = 0..50 of triangle, flattened EXAMPLE Triangle begins:   0;   0, 0;   0, 1, 0;   0, 2, 2,  0;   0, 2, 3,  2,  0;   0, 3, 4,  4,  3,  0;   0, 3, 6,  8,  6,  3, 0;   0, 4, 8, 11, 11,  8, 4, 0;   0, 4, 9, 16, 19, 16, 9, 4, 0; MAPLE with(numtheory); seq(seq(pi(binomial(n, k)), k = 0 .. n), n = 0 .. 12); # G. C. Greubel, Aug 14 2019 MATHEMATICA Flatten[Table[Table[PrimePi[Binomial[n, j]], {j, 0, n}], {n, 0, 15}], 1] PROG (PARI) T(n, k) = primepi(binomial(n, k)); for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Aug 14 2019 (MAGMA) [#PrimesUpTo(Binomial(n, k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 14 2019 (Sage) [[prime_pi(binomial(n, k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 14 2019 CROSSREFS Cf. A000720. Sequence in context: A344837 A031124 A063695 * A133388 A282516 A158092 Adjacent sequences:  A081414 A081415 A081416 * A081418 A081419 A081420 KEYWORD nonn,tabl AUTHOR Labos Elemer, Apr 02 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 18:22 EDT 2021. Contains 346488 sequences. (Running on oeis4.)