login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081417
A000720 applied to Pascal-triangle: Pi[C(n,j)], j,0..n and n=0,1,2,...
2
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 2, 3, 2, 0, 0, 3, 4, 4, 3, 0, 0, 3, 6, 8, 6, 3, 0, 0, 4, 8, 11, 11, 8, 4, 0, 0, 4, 9, 16, 19, 16, 9, 4, 0, 0, 4, 11, 23, 30, 30, 23, 11, 4, 0, 0, 4, 14, 30, 46, 54, 46, 30, 14, 4, 0, 0, 5, 16, 38, 66, 89, 89, 66, 38, 16, 5, 0, 0, 5, 18, 47, 94, 138, 157, 138, 94
OFFSET
0,8
EXAMPLE
Triangle begins:
0;
0, 0;
0, 1, 0;
0, 2, 2, 0;
0, 2, 3, 2, 0;
0, 3, 4, 4, 3, 0;
0, 3, 6, 8, 6, 3, 0;
0, 4, 8, 11, 11, 8, 4, 0;
0, 4, 9, 16, 19, 16, 9, 4, 0;
MAPLE
with(numtheory); seq(seq(pi(binomial(n, k)), k = 0 .. n), n = 0 .. 12); # G. C. Greubel, Aug 14 2019
MATHEMATICA
Flatten[Table[Table[PrimePi[Binomial[n, j]], {j, 0, n}], {n, 0, 15}], 1]
PROG
(PARI) T(n, k) = primepi(binomial(n, k));
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Aug 14 2019
(Magma) [#PrimesUpTo(Binomial(n, k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 14 2019
(Sage) [[prime_pi(binomial(n, k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 14 2019
CROSSREFS
Cf. A000720.
Sequence in context: A344837 A031124 A063695 * A133388 A354643 A282516
KEYWORD
nonn,tabl
AUTHOR
Labos Elemer, Apr 02 2003
STATUS
approved